Suppr超能文献

使用用药史分配诊断代码。

Assigning diagnosis codes using medication history.

机构信息

Department of Computer Science, Aalborg University, Aalborg, Denmark.

Department of Computer Science, Aalborg University, Aalborg, Denmark; Department of Information Systems, University of Haifa, Haifa, Israel.

出版信息

Artif Intell Med. 2022 Jun;128:102307. doi: 10.1016/j.artmed.2022.102307. Epub 2022 Apr 20.

Abstract

Diagnosis assignment is the process of assigning disease codes to patients. Automatic diagnosis assignment has the potential to validate code assignments, correct erroneous codes, and register completion. Previous methods build on text-based techniques utilizing medical notes but are inapplicable in the absence of these notes. We propose using patients' medication data to assign diagnosis codes. We present a proof-of-concept study using medical data from an American dataset (MIMIC-III) and Danish nationwide registers to train a machine-learning-based model that predicts an extensive collection of diagnosis codes for multiple levels of aggregation over a disease hierarchy. We further suggest a specialized loss function designed to utilize the innate hierarchical nature of the disease hierarchy. We evaluate the proposed method on a subset of 567 disease codes. Moreover, we investigate the technique's generalizability and transferability by (1) training and testing models on the same subsets of disease codes over the two medical datasets and (2) training models on the American dataset while evaluating them on the Danish dataset, respectively. Results demonstrate the proposed method can correctly assign diagnosis codes on multiple levels of aggregation from the disease hierarchy over the American dataset with recall 70.0% and precision 69.48% for top-10 assigned codes; thereby being comparable to text-based techniques. Furthermore, the specialized loss function performs consistently better than the non-hierarchical state-of-the-art version. Moreover, results suggest the proposed method is language and dataset-agnostic, with initial indications of transferability over subsets of disease codes.

摘要

诊断分配是将疾病代码分配给患者的过程。自动诊断分配有可能验证代码分配、纠正错误代码并记录完成情况。以前的方法基于利用医疗记录的基于文本的技术,但在没有这些记录的情况下是不适用的。我们建议使用患者的用药数据来分配诊断代码。我们提出了一项使用来自美国数据集(MIMIC-III)和丹麦全国登记处的医疗数据进行的概念验证研究,以训练一种基于机器学习的模型,该模型可以预测广泛的诊断代码,并在疾病层次结构的多个聚合级别上进行预测。我们进一步提出了一种专门的损失函数,旨在利用疾病层次结构的固有层次性质。我们在 567 个疾病代码的子集中评估了所提出的方法。此外,我们通过(1)在两个医疗数据集中的相同疾病代码子集上训练和测试模型,以及(2)在 美国数据集上训练模型,同时在丹麦数据集上评估模型,分别研究了该技术的泛化能力和可转移性。结果表明,该方法可以在来自美国数据集的疾病层次结构的多个聚合级别上正确分配诊断代码,对于前 10 个分配的代码,召回率为 70.0%,精度为 69.48%;从而与基于文本的技术相当。此外,专门的损失函数始终比非分层的最新版本表现更好。此外,结果表明,该方法是语言和数据集无关的,并且在疾病代码子集上具有初步的可转移性迹象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验