Suppr超能文献

从数百个具有缺失值的实验条件中构建的一个全球 [公式:见正文] 基因共表达网络。

A global [Formula: see text] gene co-expression network constructed from hundreds of experimental conditions with missing values.

机构信息

Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA.

Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 USA.

出版信息

BMC Bioinformatics. 2022 May 9;23(1):170. doi: 10.1186/s12859-022-04697-9.

Abstract

BACKGROUND

Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes.

RESULTS

In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes.

CONCLUSION

Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.

摘要

背景

基因共表达网络(GCN)可用于确定基因调控,并将基因功能归因于生物过程。不同的高通量技术,包括单通道和双通道微阵列和 RNA 测序,可同时评估数千个基因表达数据,但这些方法提供的结果不能直接比较。因此,分析基因之间的共表达关系很复杂,尤其是当由于实验原因出现缺失值时。网络是研究基因共表达的有用工具,其中节点表示基因,边表示基因对的共表达。

结果

在本文中,我们建立了一种从 257 项不同方法和实验设计获得的独特研究中构建冈比亚按蚊转录组基因共表达网络的方法。我们引入滑动阈值方法来选择具有高皮尔逊相关系数的节点对。由此产生的网络,我们称为 AgGCN1.0,对随机去除条件具有鲁棒性,并且具有类似于小世界和无标度网络的特征。对网络子图的分析表明,核心主要由编码线粒体呼吸链和核糖体组件的基因组成,而不同的社区富含参与不同生物过程的基因。

结论

网络分析表明,核心子网的架构和网络社区都是基于基因功能,支持所提出的 GCN 构建方法的强大功能。网络科学方法的应用表明,整体网络结构的驱动力是最大限度地整合基本的细胞功能,可能允许添加新功能的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05e8/9082846/88aea7165397/12859_2022_4697_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验