Suppr超能文献

用于表征生物膜流的结构和流变特性的微流控平台。

A microfluidic platform for characterizing the structure and rheology of biofilm streamers.

机构信息

Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland.

Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, MI, Italy.

出版信息

Soft Matter. 2022 May 25;18(20):3878-3890. doi: 10.1039/d2sm00258b.

Abstract

Biofilm formation is the most successful survival strategy for bacterial communities. In the biofilm lifestyle, bacteria embed themselves in a self-secreted matrix of extracellular polymeric substances (EPS), which acts as a shield against mechanical and chemical insults. When ambient flow is present, this viscoelastic scaffold can take a streamlined shape, forming biofilm filaments suspended in flow, called streamers. Streamers significantly disrupt the fluid flow by causing rapid clogging and affect transport in aquatic environments. Despite their relevance, the structural and rheological characterization of biofilm streamers is still at an early stage. In this work, we present a microfluidic platform that allows the reproducible growth of biofilm streamers in controlled physico-chemical conditions and the characterization of their biochemical composition, morphology, and rheology . We employed isolated micropillars as nucleation sites for the growth of single biofilm streamers under the continuous flow of a diluted bacterial suspension. By combining fluorescent staining of the EPS components and epifluorescence microscopy, we were able to characterize the biochemical composition and morphology of the streamers. Additionally, we optimized a protocol to perform hydrodynamic stress tests , by inducing controlled variations of the fluid shear stress exerted on the streamers by the flow. Thus, the reproducibility of the formation process and the testing protocol make it possible to perform several consistent experimental replicates that provide statistically significant information. By allowing the systematic investigation of the role of biochemical composition on the structure and rheology of streamers, this platform will advance our understanding of biofilm formation.

摘要

生物膜的形成是细菌群落最成功的生存策略。在生物膜生活方式中,细菌将自身嵌入由细胞外聚合物(EPS)自我分泌的基质中,这起到了抵御机械和化学损伤的屏障作用。当环境中存在流动时,这种粘弹性支架可以形成流线型形状,形成悬浮在流动中的生物膜丝状结构,称为流丝。流丝通过导致快速堵塞显著扰乱流体流动,并影响水生环境中的传输。尽管它们具有相关性,但生物膜流丝的结构和流变学特性的表征仍处于早期阶段。在这项工作中,我们提出了一种微流控平台,允许在受控的物理化学条件下可重复地生长生物膜流丝,并对其生化组成、形态和流变学进行表征。我们采用孤立的微柱作为核化位点,在稀释细菌悬浮液的连续流动下,生长单个生物膜流丝。通过对 EPS 成分进行荧光染色和落射荧光显微镜观察,我们能够对流丝的生化组成和形态进行表征。此外,我们优化了一种方案来进行流体动力应力测试,通过诱导流对流丝施加的流体剪切应力的受控变化来实现。因此,形成过程和测试方案的可重复性使得可以进行几个一致的实验重复,从而提供具有统计学意义的信息。通过允许系统地研究生化组成对流丝结构和流变学的作用,该平台将推进我们对生物膜形成的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/9131465/0c6499fe8b89/d2sm00258b-f1.jpg

相似文献

1
A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
Soft Matter. 2022 May 25;18(20):3878-3890. doi: 10.1039/d2sm00258b.
2
The structural role of bacterial eDNA in the formation of biofilm streamers.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.
3
Bacterial streamers as colloidal systems: Five grand challenges.
J Colloid Interface Sci. 2021 Jul 15;594:265-278. doi: 10.1016/j.jcis.2021.02.102. Epub 2021 Mar 9.
4
The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels.
Comput Math Methods Med. 2016;2016:7819403. doi: 10.1155/2016/7819403. Epub 2016 May 30.
7
Laminar flow around corners triggers the formation of biofilm streamers.
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
8
Secondary flow as a mechanism for the formation of biofilm streamers.
Biophys J. 2011 Mar 16;100(6):1392-9. doi: 10.1016/j.bpj.2011.01.065.

引用本文的文献

1
Disentangling the feedback loops driving spatial patterning in microbial communities.
NPJ Biofilms Microbiomes. 2025 Feb 20;11(1):32. doi: 10.1038/s41522-025-00666-1.
2
The role of fluid friction in streamer formation and biofilm growth.
NPJ Biofilms Microbiomes. 2025 Jan 15;11(1):17. doi: 10.1038/s41522-024-00633-2.
3
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
7
Ultraviolet control of bacterial biofilms in microfluidic chips.
Biomicrofluidics. 2023 Apr 25;17(2):024107. doi: 10.1063/5.0135722. eCollection 2023 Mar.
8
Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2204466120. doi: 10.1073/pnas.2204466120. Epub 2023 Mar 29.
9
Experimental challenges in determining the rheological properties of bacterial biofilms.
Interface Focus. 2022 Oct 14;12(6):20220032. doi: 10.1098/rsfs.2022.0032. eCollection 2022 Dec 6.
10
The structural role of bacterial eDNA in the formation of biofilm streamers.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.

本文引用的文献

1
The structural role of bacterial eDNA in the formation of biofilm streamers.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.
2
Bacterial streamers as colloidal systems: Five grand challenges.
J Colloid Interface Sci. 2021 Jul 15;594:265-278. doi: 10.1016/j.jcis.2021.02.102. Epub 2021 Mar 9.
3
Biofilm mechanics: Implications in infection and survival.
Biofilm. 2019 Dec 19;2:100017. doi: 10.1016/j.bioflm.2019.100017. eCollection 2020 Dec.
4
The effect of flow on swimming bacteria controls the initial colonization of curved surfaces.
Nat Commun. 2020 Jun 5;11(1):2851. doi: 10.1038/s41467-020-16620-y.
7
Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00101-19. Print 2019 Sep 15.
8
Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments.
ISME J. 2019 Jul;13(7):1700-1710. doi: 10.1038/s41396-019-0381-4. Epub 2019 Mar 4.
9
Bacteria and archaea on Earth and their abundance in biofilms.
Nat Rev Microbiol. 2019 Apr;17(4):247-260. doi: 10.1038/s41579-019-0158-9.
10
Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography.
Water Res. 2018 Nov 15;145:588-598. doi: 10.1016/j.watres.2018.08.070. Epub 2018 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验