Suppr超能文献

二次流是生物膜流的形成机制。

Secondary flow as a mechanism for the formation of biofilm streamers.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2011 Mar 16;100(6):1392-9. doi: 10.1016/j.bpj.2011.01.065.

Abstract

In most environments, such as natural aquatic systems, bacteria are found predominantly in self-organized sessile communities known as biofilms. In the presence of a significant flow, mature multispecies biofilms often develop into long filamentous structures called streamers, which can greatly influence ecosystem processes by increasing transient storage and cycling of nutrients. However, the interplay between hydrodynamic stresses and streamer formation is still unclear. Here, we show that suspended thread-like biofilms steadily develop in zigzag microchannels with different radii of curvature. Numerical simulations of a low-Reynolds-number flow around these corners indicate the presence of a secondary vortical motion whose intensity is related to the bending angle of the turn. We demonstrate that the formation of streamers is directly proportional to the intensity of the secondary flow around the corners. In addition, we show that a model of an elastic filament in a two-dimensional corner flow is able to explain how the streamers can cross fluid streamlines and connect corners located at the opposite sides of the channel.

摘要

在大多数环境中,例如自然水生系统,细菌主要存在于自组织的固着群落中,称为生物膜。在有显著流动的情况下,成熟的多物种生物膜经常发育成长丝状结构,称为流丝,通过增加营养物质的瞬态储存和循环,对流态系统过程有很大影响。然而,水动力应力和流丝形成之间的相互作用仍不清楚。在这里,我们表明,悬浮线状生物膜在具有不同曲率半径的曲折微通道中稳定地发展。对这些拐角处的低雷诺数流动的数值模拟表明存在二次涡旋运动,其强度与转弯的弯曲角度有关。我们证明,流丝的形成与拐角处二次流的强度成正比。此外,我们表明,二维拐角流中弹性丝模型能够解释流丝如何能够穿过流线并连接位于通道相对侧的拐角。

相似文献

1
Secondary flow as a mechanism for the formation of biofilm streamers.
Biophys J. 2011 Mar 16;100(6):1392-9. doi: 10.1016/j.bpj.2011.01.065.
2
Laminar flow around corners triggers the formation of biofilm streamers.
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
3
Bacterial streamers as colloidal systems: Five grand challenges.
J Colloid Interface Sci. 2021 Jul 15;594:265-278. doi: 10.1016/j.jcis.2021.02.102. Epub 2021 Mar 9.
4
A web of streamers: biofilm formation in a porous microfluidic device.
Lab Chip. 2012 Dec 21;12(24):5133-7. doi: 10.1039/c2lc40815e.
6
The structural role of bacterial eDNA in the formation of biofilm streamers.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.
7
Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
Lab Chip. 2013 May 21;13(10):1846-9. doi: 10.1039/c3lc40802g. Epub 2013 Apr 11.
8
A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
Soft Matter. 2022 May 25;18(20):3878-3890. doi: 10.1039/d2sm00258b.
9
The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels.
Comput Math Methods Med. 2016;2016:7819403. doi: 10.1155/2016/7819403. Epub 2016 May 30.
10
CFD-DEM modelling of biofilm streamer oscillations and their cohesive failure in fluid flow.
Biotechnol Bioeng. 2021 Feb;118(2):918-929. doi: 10.1002/bit.27619. Epub 2020 Nov 18.

引用本文的文献

1
Biofilm formation of food isolates under flow and resistance to disinfectant agents.
Heliyon. 2024 Sep 26;10(19):e38502. doi: 10.1016/j.heliyon.2024.e38502. eCollection 2024 Oct 15.
2
Mesoscopic ring element growth and deformation induced biofilm streamer evolution in microfluidic channels.
Water Sci Technol. 2024 Jun;89(11):2867-2879. doi: 10.2166/wst.2024.168. Epub 2024 May 24.
3
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
4
A microtiter peg lid with ziggurat geometry for medium-throughput antibiotic testing and imaging of biofilms.
Biofilm. 2023 Nov 17;6:100167. doi: 10.1016/j.bioflm.2023.100167. eCollection 2023 Dec 15.
5
Bayesian estimation of viscoelastic properties based on creep responses of wild type, rugose, and mucoid variant biofilms.
Biofilm. 2023 Jun 3;5:100133. doi: 10.1016/j.bioflm.2023.100133. eCollection 2023 Dec.
6
Interaction of Bacteria, Immune Cells, and Surface Topography in Periprosthetic Joint Infections.
Int J Mol Sci. 2023 May 19;24(10):9028. doi: 10.3390/ijms24109028.
7
Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2204466120. doi: 10.1073/pnas.2204466120. Epub 2023 Mar 29.
8
strains show diversity in biofilm formation under flow conditions.
Heliyon. 2022 Dec 24;8(12):e12602. doi: 10.1016/j.heliyon.2022.e12602. eCollection 2022 Dec.
9
Experimental challenges in determining the rheological properties of bacterial biofilms.
Interface Focus. 2022 Oct 14;12(6):20220032. doi: 10.1098/rsfs.2022.0032. eCollection 2022 Dec 6.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa.
Biophys J. 2011 Jan 19;100(2):341-50. doi: 10.1016/j.bpj.2010.11.078.
3
Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):421-31. doi: 10.1111/j.1574-695X.2010.00694.x. Epub 2010 May 10.
4
Drivers of bacterial colonization patterns in stream biofilms.
FEMS Microbiol Ecol. 2010 Apr;72(1):47-57. doi: 10.1111/j.1574-6941.2009.00830.x.
5
Laminar flow around corners triggers the formation of biofilm streamers.
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
7
Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
Water Res. 2010 Feb;44(3):689-702. doi: 10.1016/j.watres.2009.09.054. Epub 2009 Sep 25.
8
Architectural differentiation reflects bacterial community structure in stream biofilms.
ISME J. 2009 Nov;3(11):1318-24. doi: 10.1038/ismej.2009.73. Epub 2009 Jul 2.
9
Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic.
Environ Microbiol. 2009 Mar;11(3):616-29. doi: 10.1111/j.1462-2920.2008.01833.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验