Suppr超能文献

二次流是生物膜流的形成机制。

Secondary flow as a mechanism for the formation of biofilm streamers.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2011 Mar 16;100(6):1392-9. doi: 10.1016/j.bpj.2011.01.065.

Abstract

In most environments, such as natural aquatic systems, bacteria are found predominantly in self-organized sessile communities known as biofilms. In the presence of a significant flow, mature multispecies biofilms often develop into long filamentous structures called streamers, which can greatly influence ecosystem processes by increasing transient storage and cycling of nutrients. However, the interplay between hydrodynamic stresses and streamer formation is still unclear. Here, we show that suspended thread-like biofilms steadily develop in zigzag microchannels with different radii of curvature. Numerical simulations of a low-Reynolds-number flow around these corners indicate the presence of a secondary vortical motion whose intensity is related to the bending angle of the turn. We demonstrate that the formation of streamers is directly proportional to the intensity of the secondary flow around the corners. In addition, we show that a model of an elastic filament in a two-dimensional corner flow is able to explain how the streamers can cross fluid streamlines and connect corners located at the opposite sides of the channel.

摘要

在大多数环境中,例如自然水生系统,细菌主要存在于自组织的固着群落中,称为生物膜。在有显著流动的情况下,成熟的多物种生物膜经常发育成长丝状结构,称为流丝,通过增加营养物质的瞬态储存和循环,对流态系统过程有很大影响。然而,水动力应力和流丝形成之间的相互作用仍不清楚。在这里,我们表明,悬浮线状生物膜在具有不同曲率半径的曲折微通道中稳定地发展。对这些拐角处的低雷诺数流动的数值模拟表明存在二次涡旋运动,其强度与转弯的弯曲角度有关。我们证明,流丝的形成与拐角处二次流的强度成正比。此外,我们表明,二维拐角流中弹性丝模型能够解释流丝如何能够穿过流线并连接位于通道相对侧的拐角。

相似文献

2
Laminar flow around corners triggers the formation of biofilm streamers.层流绕过拐角会引发生物膜流的形成。
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
3
Bacterial streamers as colloidal systems: Five grand challenges.作为胶体系统的细菌拖尾:五大重大挑战。
J Colloid Interface Sci. 2021 Jul 15;594:265-278. doi: 10.1016/j.jcis.2021.02.102. Epub 2021 Mar 9.
6
The structural role of bacterial eDNA in the formation of biofilm streamers.细菌 eDNA 在生物膜流形成中的结构作用。
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.

引用本文的文献

3
Microfluidic approaches in microbial ecology.微生物生态学中的微流控方法。
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
8
strains show diversity in biofilm formation under flow conditions.菌株在流动条件下的生物膜形成中表现出多样性。
Heliyon. 2022 Dec 24;8(12):e12602. doi: 10.1016/j.heliyon.2022.e12602. eCollection 2022 Dec.
9
Experimental challenges in determining the rheological properties of bacterial biofilms.确定细菌生物膜流变学特性的实验挑战
Interface Focus. 2022 Oct 14;12(6):20220032. doi: 10.1098/rsfs.2022.0032. eCollection 2022 Dec 6.

本文引用的文献

4
Drivers of bacterial colonization patterns in stream biofilms.溪流生物膜中细菌定殖模式的驱动因素。
FEMS Microbiol Ecol. 2010 Apr;72(1):47-57. doi: 10.1111/j.1574-6941.2009.00830.x.
5
Laminar flow around corners triggers the formation of biofilm streamers.层流绕过拐角会引发生物膜流的形成。
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验