School of Engineering and Applied Sciences, Harvard University, , Cambridge, MA 02138, USA.
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments.
细菌生物膜对医学、工业和生态学有巨大的影响。这些微生物群落通常被认为附着在表面或界面上。然而,在自然生态系统中,经常观察到悬浮丝状生物膜或流丝,它们通过增强营养物质的输送和悬浮颗粒的保留,在其中发挥着关键作用。最近在岸边水槽和实验室流动池中进行的研究假设与湍流环境有关。然而,水动力与复杂生物膜结构之间的耦合仍然知之甚少。在这里,我们报告了在层流条件下,在弯曲微通道的中间平面中悬浮的生物膜流丝的形成。使用不同突变株的实验使我们能够确定细胞外基质的积累与这些结构的发展之间的联系。弯曲通道中流场的数值模拟突出了在拐角附近存在二次涡旋运动,这表明存在一种潜在的水动力机制负责流丝的形成。我们的发现应该与所有可能存在生物膜的液体输送系统的设计有关,并为自然和工业环境中微生物流丝的起源提供新的见解。