Suppr超能文献

层流绕过拐角会引发生物膜流的形成。

Laminar flow around corners triggers the formation of biofilm streamers.

机构信息

School of Engineering and Applied Sciences, Harvard University, , Cambridge, MA 02138, USA.

出版信息

J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.

Abstract

Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments.

摘要

细菌生物膜对医学、工业和生态学有巨大的影响。这些微生物群落通常被认为附着在表面或界面上。然而,在自然生态系统中,经常观察到悬浮丝状生物膜或流丝,它们通过增强营养物质的输送和悬浮颗粒的保留,在其中发挥着关键作用。最近在岸边水槽和实验室流动池中进行的研究假设与湍流环境有关。然而,水动力与复杂生物膜结构之间的耦合仍然知之甚少。在这里,我们报告了在层流条件下,在弯曲微通道的中间平面中悬浮的生物膜流丝的形成。使用不同突变株的实验使我们能够确定细胞外基质的积累与这些结构的发展之间的联系。弯曲通道中流场的数值模拟突出了在拐角附近存在二次涡旋运动,这表明存在一种潜在的水动力机制负责流丝的形成。我们的发现应该与所有可能存在生物膜的液体输送系统的设计有关,并为自然和工业环境中微生物流丝的起源提供新的见解。

相似文献

1
Laminar flow around corners triggers the formation of biofilm streamers.
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
2
Secondary flow as a mechanism for the formation of biofilm streamers.
Biophys J. 2011 Mar 16;100(6):1392-9. doi: 10.1016/j.bpj.2011.01.065.
3
The structural role of bacterial eDNA in the formation of biofilm streamers.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2113723119. doi: 10.1073/pnas.2113723119. Epub 2022 Mar 15.
4
Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4345-50. doi: 10.1073/pnas.1300321110. Epub 2013 Feb 11.
5
A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
Soft Matter. 2022 May 25;18(20):3878-3890. doi: 10.1039/d2sm00258b.
10
Bacterial streamers as colloidal systems: Five grand challenges.
J Colloid Interface Sci. 2021 Jul 15;594:265-278. doi: 10.1016/j.jcis.2021.02.102. Epub 2021 Mar 9.

引用本文的文献

1
Microfluidics unveils role of gravity and shear stress on Pseudomonas fluorescens motility and biofilm growth.
NPJ Biofilms Microbiomes. 2025 Jul 1;11(1):122. doi: 10.1038/s41522-025-00744-4.
3
Dynamics of Spatial Organization of Bacterial Communities in a Tunable Flow Gut Microbiome-on-a-Chip.
Small. 2025 May;21(20):e2410258. doi: 10.1002/smll.202410258. Epub 2025 Apr 9.
4
Bacterial species with different nanocolony morphologies have distinct flow-dependent colonization behaviors.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2419899122. doi: 10.1073/pnas.2419899122. Epub 2025 Feb 10.
5
The role of fluid friction in streamer formation and biofilm growth.
NPJ Biofilms Microbiomes. 2025 Jan 15;11(1):17. doi: 10.1038/s41522-024-00633-2.
7
Mesoscopic ring element growth and deformation induced biofilm streamer evolution in microfluidic channels.
Water Sci Technol. 2024 Jun;89(11):2867-2879. doi: 10.2166/wst.2024.168. Epub 2024 May 24.
8
Dissecting Gut-Microbial Community Interactions using a Gut Microbiome-on-a-Chip.
Adv Sci (Weinh). 2024 May;11(20):e2302113. doi: 10.1002/advs.202302113. Epub 2024 Feb 27.
9
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Architectural differentiation reflects bacterial community structure in stream biofilms.
ISME J. 2009 Nov;3(11):1318-24. doi: 10.1038/ismej.2009.73. Epub 2009 Jul 2.
4
Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem.
Water Res. 2009 Feb;43(3):583-94. doi: 10.1016/j.watres.2008.11.019. Epub 2008 Nov 27.
6
Prosthetic-joint infections.
N Engl J Med. 2004 Oct 14;351(16):1645-54. doi: 10.1056/NEJMra040181.
7
Commonality of elastic relaxation times in biofilms.
Phys Rev Lett. 2004 Aug 27;93(9):098102. doi: 10.1103/PhysRevLett.93.098102. Epub 2004 Aug 24.
9
Bacterial biofilms: from the natural environment to infectious diseases.
Nat Rev Microbiol. 2004 Feb;2(2):95-108. doi: 10.1038/nrmicro821.
10
Bacteria and wound healing.
Curr Opin Infect Dis. 2004 Apr;17(2):91-6. doi: 10.1097/00001432-200404000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验