Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States.
Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States.
ACS Appl Mater Interfaces. 2022 Jun 8;14(22):25972-25983. doi: 10.1021/acsami.2c02474. Epub 2022 May 10.
Molecularly imprinted polymers (MIPs), often called "synthetic antibodies", are highly attractive as artificial receptors with tailored biomolecular recognition to construct biosensors. Electropolymerization is a fast and facile method to directly synthesize MIP sensing elements on the working electrode, enabling ultra-low-cost and easy-to-manufacture electrochemical biosensors. However, due to the high dimensional design space of electropolymerized MIPs (e-MIPs), the development of e-MIPs is challenging and lengthy based on trial and error without proper guidelines. Leveraging machine learning techniques in building the quantitative relationship between synthesis parameters and corresponding sensing performance, e-MIPs' development and optimization can be facilitated. We herein demonstrate a case study on the synthesis of cortisol-imprinted polypyrrole for cortisol detection, where e-MIPs are fabricated with 72 sets of synthesis parameters with replicates. Their sensing performances are measured using a 12-channel potentiostat to construct the subsequent data-driven framework. The Gaussian process (GP) is employed as the mainstay of the integrated framework, which can account for various uncertainties in the synthesis and measurements. The Sobol index-based global sensitivity is then performed upon the GP surrogate model to elucidate the impact of e-MIPs' synthesis parameters on sensing performance and interrelations among parameters. Based on the prediction of the established GP model and local sensitivity analysis, synthesis parameters are optimized and validated by experiment, which leads to remarkable sensing performance enhancement (1.5-fold increase in sensitivity). The proposed framework is novel in biosensor development, which is expandable and also generally applicable to the development of other sensing materials.
分子印迹聚合物(MIPs),通常被称为“合成抗体”,作为具有定制生物分子识别能力的人工受体,在构建生物传感器方面具有很大的吸引力。电聚合是一种快速简便的方法,可以直接在工作电极上合成 MIP 传感元件,从而实现超低成本和易于制造的电化学生物传感器。然而,由于电聚合 MIPs(e-MIPs)的高维设计空间,基于试错法的 e-MIPs 开发既具有挑战性又耗时,而没有适当的指导原则。利用机器学习技术构建合成参数与相应传感性能之间的定量关系,可以促进 e-MIPs 的开发和优化。在这里,我们展示了一个基于皮质醇印迹聚吡咯的皮质醇检测的合成研究案例,其中使用 72 组具有重复的合成参数来制备 e-MIPs。使用 12 通道电位计测量它们的传感性能,以构建随后的数据驱动框架。高斯过程(GP)被用作集成框架的主要支柱,可以解释合成和测量中的各种不确定性。然后,基于 GP 替代模型进行 Sobol 指数全局灵敏度分析,以阐明 e-MIPs 合成参数对传感性能的影响以及参数之间的相互关系。基于建立的 GP 模型的预测和局部灵敏度分析,通过实验优化和验证合成参数,从而显著提高传感性能(灵敏度提高 1.5 倍)。所提出的框架在生物传感器开发中是新颖的,它具有可扩展性,并且通常适用于其他传感材料的开发。