Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, Pennsylvania.
Cancer Res. 2022 Jul 5;82(13):2485-2498. doi: 10.1158/0008-5472.CAN-22-0804.
Mutations in RAS isoforms (KRAS, NRAS, and HRAS) are among the most frequent oncogenic alterations in many cancers, making these proteins high priority therapeutic targets. Effectively targeting RAS isoforms requires an exact understanding of their active, inactive, and druggable conformations. However, there is no structural catalog of RAS conformations to guide therapeutic targeting or examining the structural impact of RAS mutations. Here we present an expanded classification of RAS conformations based on analyses of the catalytic switch 1 (SW1) and switch 2 (SW2) loops. From 721 human KRAS, NRAS, and HRAS structures available in the Protein Data Bank (206 RAS-protein cocomplexes, 190 inhibitor-bound, and 325 unbound, including 204 WT and 517 mutated structures), we created a broad conformational classification based on the spatial positions of Y32 in SW1 and Y71 in SW2. Clustering all well-modeled SW1 and SW2 loops using a density-based machine learning algorithm defined additional conformational subsets, some previously undescribed. Three SW1 conformations and nine SW2 conformations were identified, each associated with different nucleotide states (GTP-bound, nucleotide-free, and GDP-bound) and specific bound proteins or inhibitor sites. The GTP-bound SW1 conformation could be further subdivided on the basis of the hydrogen bond type made between Y32 and the GTP γ-phosphate. Further analysis clarified the catalytic impact of G12D and G12V mutations and the inhibitor chemistries that bind to each druggable RAS conformation. Overall, this study has expanded our understanding of RAS structural biology, which could facilitate future RAS drug discovery.
Analysis of >700 RAS structures helps define an expanded landscape of active, inactive, and druggable RAS conformations, the structural impact of common RAS mutations, and previously uncharacterized RAS inhibitor-binding modes.
在许多癌症中,RAS 同工型(KRAS、NRAS 和 HRAS)的突变是最常见的致癌改变之一,使这些蛋白质成为高优先级的治疗靶点。有效靶向 RAS 同工型需要精确了解其活性、非活性和可成药构象。然而,目前还没有 RAS 构象的结构目录来指导治疗靶向或检查 RAS 突变的结构影响。在这里,我们基于对催化开关 1(SW1)和开关 2(SW2)环的分析,提出了 RAS 构象的扩展分类。从蛋白质数据库中可用的 721 个人类 KRAS、NRAS 和 HRAS 结构(206 个 RAS-蛋白复合物、190 个抑制剂结合物和 325 个无结合物,包括 204 个 WT 和 517 个突变结构)中,我们根据 Y32 在 SW1 和 Y71 在 SW2 中的空间位置创建了一个广泛的构象分类。使用基于密度的机器学习算法对所有建模良好的 SW1 和 SW2 环进行聚类,定义了其他构象子集,其中一些是以前未描述的。确定了三种 SW1 构象和九种 SW2 构象,每种构象都与不同的核苷酸状态(GTP 结合、无核苷酸和 GDP 结合)和特定的结合蛋白或抑制剂结合位点相关联。基于 Y32 与 GTP γ-磷酸之间形成的氢键类型,GTP 结合的 SW1 构象可以进一步细分。进一步的分析阐明了 G12D 和 G12V 突变的催化影响以及与每种可成药 RAS 构象结合的抑制剂化学性质。总的来说,这项研究扩展了我们对 RAS 结构生物学的理解,这可能有助于未来的 RAS 药物发现。
对超过 700 个 RAS 结构的分析有助于定义一个扩展的 RAS 活性、非活性和可成药构象景观、常见 RAS 突变的结构影响以及以前未表征的 RAS 抑制剂结合模式。