Trenfield Kaitlin, Lin Milo M
Green Ctr. for Systems Biology, University of Texas Southwestern Medical Ctr., Dallas, TX, USA.
Lyda Hill Dept. of Bioinformatics, University of Texas Southwestern Medical Ctr.
bioRxiv. 2025 May 30:2025.05.28.656549. doi: 10.1101/2025.05.28.656549.
Proteins can sense signals and-in a process called allostery-transmit information to distant sites. Such information is often not encoded by a protein's average structure, but rather by its dynamics in a way that remains unclear. We show that maximum information tree networks learned from microseconds-long molecular dynamics simulations of a PDZ domain and the entire human steroid receptor family provide mechanistically-detailed maps of information transmission within proteins in a ligand- and mutation-sensitive manner. These networks quantitatively predict functionally relevant experimental datasets spanning multiple scales, including allosteric sensitivity across a saturation mutagenesis library, calorimetric binding entropies, and phylogenetic trees. These results suggest that a sparse network of entropic couplings encodes the dynamics-to-function map; functional reprogramming and diversification by ligand binding and evolution can modify this network without changing protein structure.
蛋白质能够感知信号,并通过一种称为变构的过程将信息传递到远处位点。此类信息通常并非由蛋白质的平均结构编码,而是以一种尚不清楚的方式由其动力学编码。我们表明,从一个PDZ结构域以及整个人类类固醇受体家族长达微秒级的分子动力学模拟中学习到的最大信息树网络,以一种对配体和突变敏感的方式,提供了蛋白质内部信息传递的详细机制图谱。这些网络定量预测了跨越多个尺度的功能相关实验数据集,包括饱和诱变文库中的变构敏感性、量热结合熵以及系统发育树。这些结果表明,一个稀疏的熵耦合网络编码了动力学与功能的图谱;通过配体结合和进化进行的功能重编程和多样化可以在不改变蛋白质结构的情况下修改这个网络。