Suppr超能文献

基于深度学习的癫痫脑磁图自动棘波检测与偶极子分析

Fully-Automated Spike Detection and Dipole Analysis of Epileptic MEG Using Deep Learning.

出版信息

IEEE Trans Med Imaging. 2022 Oct;41(10):2879-2890. doi: 10.1109/TMI.2022.3173743. Epub 2022 Sep 30.

Abstract

Magnetoencephalography (MEG) is a useful tool for clinically evaluating the localization of interictal spikes. Neurophysiologists visually identify spikes from the MEG waveforms and estimate the equivalent current dipoles (ECD). However, presently, these analyses are manually performed by neurophysiologists and are time-consuming. Another problem is that spike identification from MEG waveforms largely depends on neurophysiologists' skills and experiences. These problems cause poor cost-effectiveness in clinical MEG examination. To overcome these problems, we fully automated spike identification and ECD estimation using a deep learning approach fully automated AI-based MEG interictal epileptiform discharge identification and ECD estimation (FAMED). We applied a semantic segmentation method, which is an image processing technique, to identify the appropriate times between spike onset and peak and to select appropriate sensors for ECD estimation. FAMED was trained and evaluated using clinical MEG data acquired from 375 patients. FAMED training was performed in two stages: in the first stage, a classification network was learned, and in the second stage, a segmentation network that extended the classification network was learned. The classification network had a mean AUC of 0.9868 (10-fold patient-wise cross-validation); the sensitivity and specificity were 0.7952 and 0.9971, respectively. The median distance between the ECDs estimated by the neurophysiologists and those using FAMED was 0.63 cm. Thus, the performance of FAMED is comparable to that of neurophysiologists, and it can contribute to the efficiency and consistency of MEG ECD analysis.

摘要

脑磁图(MEG)是评估发作间期棘波定位的有用工具。神经生理学家从 MEG 波形中识别棘波,并估计等效电流偶极子(ECD)。然而,目前这些分析是由神经生理学家手动进行的,既费时又费力。另一个问题是,从 MEG 波形中识别棘波在很大程度上取决于神经生理学家的技能和经验。这些问题导致临床 MEG 检查的成本效益不佳。为了解决这些问题,我们使用深度学习方法完全自动化了棘波识别和 ECD 估计,即基于人工智能的完全自动化 MEG 发作间期癫痫样放电识别和 ECD 估计(FAMED)。我们应用了语义分割方法,这是一种图像处理技术,用于识别棘波起始和峰值之间的适当时间,并选择用于 ECD 估计的适当传感器。FAMED 使用从 375 名患者采集的临床 MEG 数据进行训练和评估。FAMED 训练分两个阶段进行:第一阶段,学习分类网络;第二阶段,学习扩展分类网络的分割网络。分类网络的平均 AUC 为 0.9868(10 倍患者交叉验证);敏感性和特异性分别为 0.7952 和 0.9971。神经生理学家估计的 ECD 与 FAMED 使用的 ECD 之间的中位数距离为 0.63 厘米。因此,FAMED 的性能可与神经生理学家相媲美,有助于提高 MEG ECD 分析的效率和一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验