Suppr超能文献

深度学习模型在早产儿胸片中预测支气管肺发育不良的应用。

Deep Learning Model for Prediction of Bronchopulmonary Dysplasia in Preterm Infants Using Chest Radiographs.

机构信息

Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.

Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2063-2073. doi: 10.1007/s10278-024-01050-9. Epub 2024 Mar 18.

Abstract

Bronchopulmonary dysplasia (BPD) is common in preterm infants and may result in pulmonary vascular disease, compromising lung function. This study aimed to employ artificial intelligence (AI) techniques to help physicians accurately diagnose BPD in preterm infants in a timely and efficient manner. This retrospective study involves two datasets: a lung region segmentation dataset comprising 1491 chest radiographs of infants, and a BPD prediction dataset comprising 1021 chest radiographs of preterm infants. Transfer learning of a pre-trained machine learning model was employed for lung region segmentation and image fusion for BPD prediction to enhance the performance of the AI model. The lung segmentation model uses transfer learning to achieve a dice score of 0.960 for preterm infants with 168 h postnatal age. The BPD prediction model exhibited superior diagnostic performance compared to that of experts and demonstrated consistent performance for chest radiographs obtained at 24 h postnatal age, and those obtained at 25 to 168 h postnatal age. This study is the first to use deep learning on preterm chest radiographs for lung segmentation to develop a BPD prediction model with an early detection time of less than 24 h. Additionally, this study compared the model's performance according to both NICHD and Jensen criteria for BPD. Results demonstrate that the AI model surpasses the diagnostic accuracy of experts in predicting lung development in preterm infants.

摘要

支气管肺发育不良(BPD)在早产儿中很常见,可能导致肺血管疾病,损害肺功能。本研究旨在利用人工智能(AI)技术帮助医生及时、有效地诊断早产儿的 BPD。本回顾性研究涉及两个数据集:一个是包含 1491 张婴儿胸部 X 光片的肺区分割数据集,另一个是包含 1021 张早产儿胸部 X 光片的 BPD 预测数据集。使用预训练机器学习模型的迁移学习进行肺区分割和图像融合,以提高 AI 模型的性能。肺分割模型使用迁移学习,在 168 小时后出生的早产儿中达到了 0.960 的骰子分数。BPD 预测模型的诊断性能优于专家,并且在 24 小时后出生的和 25 至 168 小时后出生的胸部 X 光片上都表现出一致的性能。这是第一项在早产儿胸部 X 光片上使用深度学习进行肺分割来开发 BPD 预测模型的研究,该模型具有不到 24 小时的早期检测时间。此外,本研究还根据 NICHD 和 Jensen 标准比较了模型对 BPD 的预测性能。结果表明,该 AI 模型在预测早产儿肺发育方面的诊断准确性超过了专家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b1a/11522213/f32d00c552e0/10278_2024_1050_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验