Suppr超能文献

无监督学习和强化学习在人类范畴感知中的整合:一个计算模型。

Integrating unsupervised and reinforcement learning in human categorical perception: A computational model.

机构信息

Laboratory of Computational Embodied Neuroscience, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.

School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, United Kingdom.

出版信息

PLoS One. 2022 May 10;17(5):e0267838. doi: 10.1371/journal.pone.0267838. eCollection 2022.

Abstract

Categorical perception identifies a tuning of human perceptual systems that can occur during the execution of a categorisation task. Despite the fact that experimental studies and computational models suggest that this tuning is influenced by task-independent effects (e.g., based on Hebbian and unsupervised learning, UL) and task-dependent effects (e.g., based on reward signals and reinforcement learning, RL), no model studies the UL/RL interaction during the emergence of categorical perception. Here we have investigated the effects of this interaction, proposing a system-level neuro-inspired computational architecture in which a perceptual component integrates UL and RL processes. The model has been tested with a categorisation task and the results show that a balanced mix of unsupervised and reinforcement learning leads to the emergence of a suitable categorical perception and the best performance in the task. Indeed, an excessive unsupervised learning contribution tends to not identify task-relevant features while an excessive reinforcement learning contribution tends to initially learn slowly and then to reach sub-optimal performance. These results are consistent with the experimental evidence regarding categorical activations of extrastriate cortices in healthy conditions. Finally, the results produced by the two extreme cases of our model can explain the existence of several factors that may lead to sensory alterations in autistic people.

摘要

类别知觉识别了人类感知系统在执行分类任务时可能发生的调谐。尽管实验研究和计算模型表明这种调谐受到任务独立效应(例如基于赫布和无监督学习(UL))和任务依赖效应(例如基于奖励信号和强化学习(RL))的影响,但没有模型研究类别知觉出现期间的 UL/RL 相互作用。在这里,我们研究了这种相互作用的影响,提出了一种系统级的神经启发计算架构,其中感知组件集成了 UL 和 RL 过程。该模型已通过分类任务进行了测试,结果表明,无监督和强化学习的平衡混合导致适当的类别知觉的出现和任务的最佳性能。实际上,过多的无监督学习贡献往往无法识别与任务相关的特征,而过多的强化学习贡献往往会导致初始学习缓慢,然后达到次优性能。这些结果与健康条件下外侧皮质的类别激活的实验证据一致。最后,我们模型的两个极端情况下产生的结果可以解释可能导致自闭症患者感觉改变的几个因素的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da10/9089926/64762460631d/pone.0267838.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验