Chen Zhen, Liu Jie, Zhu Meilu, Woo Peter Y M, Yuan Yixuan
Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
Department of Neurosurgery, Kwong Wah Hospital, Hong Kong SAR, China.
Med Image Anal. 2022 May;78:102421. doi: 10.1016/j.media.2022.102421. Epub 2022 Mar 18.
Automatic diagnosis of 3D medical data is a significant goal of intelligent healthcare. By exploiting the abundant pathological information of 3D data, human experts and algorithms can provide accurate predictions for patients. Considering the high cost of collecting exhaustive annotations for 3D data, a sustainable alternative is to develop diagnosis algorithms with merely patient-level labels. Motivated by the fact that 2D slices of 3D data hold explicit diagnostic efficacy, we propose the Instance Importance-aware Graph Convolutional Network (IGCN) under the multi-instance learning (MIL). Specifically, we first calculate the instance importance of each slice towards diagnosis using a preliminary MIL classifier, which is further utilized to promote the refined diagnosis branch. In the refined diagnosis branch, we devise the Instance Importance-aware Graph Convolutional Layer (IGCLayer) to exploit complementary features in both importance-based and feature-based topologies. Moreover, to alleviate the deficient supervision of 3D dataset, we propose the importance-based Sub-Graph Augmentation (SGA) to effectively regularize the framework training. Extensive experiments confirm the effectiveness of our method with different organs and modals on the CC-CCII and PROSTATEx datasets, which outperforms state-of-the-art methods by a large margin. The source code is available at https://github.com/CityU-AIM-Group/I2GCN.
三维医学数据的自动诊断是智能医疗保健的一个重要目标。通过利用三维数据丰富的病理信息,人类专家和算法可以为患者提供准确的预测。考虑到为三维数据收集详尽注释的成本高昂,一种可持续的替代方法是开发仅具有患者级标签的诊断算法。受三维数据的二维切片具有明确诊断效力这一事实的启发,我们在多实例学习(MIL)框架下提出了实例重要性感知图卷积网络(IGCN)。具体而言,我们首先使用一个初步的MIL分类器计算每个切片对诊断的实例重要性,该重要性进一步用于促进精细诊断分支。在精细诊断分支中,我们设计了实例重要性感知图卷积层(IGCLayer),以利用基于重要性和基于特征的拓扑结构中的互补特征。此外,为了缓解三维数据集监督不足的问题,我们提出了基于重要性的子图增强(SGA)来有效地规范框架训练。大量实验证实了我们的方法在CC - CCII和PROSTATEx数据集上对不同器官和模态的有效性,该方法在很大程度上优于现有方法。源代码可在https://github.com/CityU-AIM-Group/I2GCN获取。