Suppr超能文献

用于基态和激发态的变分耦合簇方法。

Variational coupled cluster for ground and excited states.

作者信息

Marie Antoine, Kossoski Fábris, Loos Pierre-François

机构信息

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.

出版信息

J Chem Phys. 2021 Sep 14;155(10):104105. doi: 10.1063/5.0060698.

Abstract

In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-called amplitudes that are then used to compute the energy and other properties. Although it is of common practice to converge to the (lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations that may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC and we compare it with its (projected) traditional version in the case where the excitation operator is restricted to paired double excitations (pCCD). By investigating two model systems (the symmetric stretching of the linear H molecule and the continuous deformation of the square H molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of variational pCCD (VpCCD) and traditional pCCD is gauged against their configuration interaction (CI) equivalent, known as doubly occupied CI, for reference Slater determinants made of ground- or excited-state Hartree-Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The influence of spatial symmetry breaking is also investigated.

摘要

在单参考耦合簇(CC)方法中,必须求解一组非线性多项式方程,以确定所谓的振幅,然后用这些振幅来计算能量和其他性质。尽管通常做法是收敛到(最低能量的)基态解,但借助定制算法,也有可能得到这些方程的更高能量根,这些根可能对应也可能不对应于真正的激发态。在此,我们探索变分CC能量景观的结构,并将其与激发算符限于成对双激发(pCCD)情况下的(投影)传统版本进行比较。通过研究两个模型系统(线性H分子的对称拉伸以及方形H分子向矩形排列的连续变形)在弱关联和强关联情况下的情况,针对由基态或激发态哈特里 - 福克轨道或直接在VpCCD水平优化的特定状态轨道构成的参考斯莱特行列式,将变分pCCD(VpCCD)和传统pCCD的性能与它们的组态相互作用(CI)等效方法(称为双占据CI)进行衡量。还研究了空间对称性破缺的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验