Suppr超能文献

分娩量对严重产妇发病率的因果效应:来自中国四川的工具变量分析。

The causal effect of delivery volume on severe maternal morbidity: an instrumental variable analysis in Sichuan, China.

机构信息

HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China.

Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, Chengdu, People's Republic of China.

出版信息

BMJ Glob Health. 2022 May;7(5). doi: 10.1136/bmjgh-2022-008428.

Abstract

OBJECTIVE

Findings regarding the association between delivery volume and maternal health outcomes are mixed, most of which explored their correlation. This study aims to demonstrate the causal effect of delivery volume on severe maternal morbidity (SMM) in China.

METHODS

We analysed all women giving birth in the densely populated Sichuan province with 83 million residents in China, during the fourth quarters of each of 4 years (from 2016 to 2019). The routinely collected discharge data, the health institutional annual report data and road network data were used for analysis. The maternal health outcome was measured by SMM. Instrumental variable (IV) methods were applied for estimation, while the surrounding average number of delivery cases per institution was used as the instrument.

RESULTS

The study included 4545 institution-years of data from 1456 distinct institutions with delivery services, reflecting 810 049 associated delivery cases. The average SMM rate was approximately 33.08 per 1000 deliveries during 2016 and 2019. More than 86% of delivery services were provided by a third of the institutions with the highest delivery volume (≥143 delivery cases quarterly). In contrast, less than 2% of delivery services were offered by a third of the institutions with the lowest delivery volume (<19 delivery cases quarterly). After adjusting the confounders in the IV-logistic models, the average marginal effect of per 1000 cases in delivery volume was -0.162 (95% CI -0.169 to -0.155), while the adjusted OR of delivery volume was 0.005 (95% CI 0.004 to 0.006).

CONCLUSION

Increased delivery volume has great potential to improve maternal health outcomes, while the centralisation of delivery services might facilitate maternal health promotion in China. Our study also provides implications for other developing countries confronted with similar challenges to China.

摘要

目的

关于分娩量与产妇健康结局之间的关联的研究结果不一,大多数研究都探讨了两者之间的相关性。本研究旨在展示分娩量对中国严重产妇发病率(SMM)的因果效应。

方法

我们分析了中国人口 8300 万的人口大省四川省在四年(2016 年至 2019 年)第四季度所有分娩的妇女的数据。使用常规收集的出院数据、卫生机构年度报告数据和道路网络数据进行分析。产妇健康结局以严重产妇发病率(SMM)衡量。采用工具变量(IV)方法进行估计,而机构的周围平均分娩病例数则作为工具变量。

结果

本研究包括来自 1456 家提供分娩服务的不同机构的 4545 个机构年的数据,反映了 810049 例相关分娩病例。2016 年至 2019 年,SMM 发生率平均约为每 1000 例 33.08 例。超过 86%的分娩服务由三分之一的分娩量最高(每季度≥143 例)的机构提供。相比之下,不到 2%的分娩服务由三分之一的分娩量最低(每季度<19 例)的机构提供。在 IV-logistic 模型中调整混杂因素后,分娩量每增加 1000 例的平均边际效应为-0.162(95%CI-0.169 至-0.155),而分娩量的调整比值比(OR)为 0.005(95%CI 0.004 至 0.006)。

结论

增加分娩量对改善产妇健康结局具有巨大潜力,而分娩服务的集中化可能有助于在中国促进产妇健康。我们的研究还为其他面临与中国类似挑战的发展中国家提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/954f/9092146/d3ebdadc22f4/bmjgh-2022-008428f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验