Jabbar Muhammad Kashif, Jianjun Huang, Jabbar Ayesha, Bilal Anas
Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, 518060, China.
College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China.
Sci Rep. 2025 Jul 1;15(1):21819. doi: 10.1038/s41598-025-06306-0.
Accurate disease prediction is essential for improving patient outcomes. Privacy regulations like GDPR and HIPAA limit data sharing, hindering the development of robust predictive models across institutions. FL and multi-modal fusion frameworks counter these problems but are restricted in scalability, inter-client communication, and heterogeneity of data modalities. Techniques which provide privacy on data have an issue whereby they cause a reduction in performance or are computationally costly. This paper presents Mamba-Fusion for Disease prediction, a privacy-preserving framework for multi-modal data. It uses a hierarchical FL architecture to minimize the communication costs and improve the architecture's scalability solution and a Mixture of Experts (MoE) with LSTM based layers for dynamic temporal integration. The latest techniques like, differential privacy, secure aggregation protect both the data and its accuracy of the data as well. Experimental results on multi-modal clinical measurements, ECG, EEG, clinical notes, and demographic data support the applied framework. We have then used Mamba-Fusion to achieve 92:4% accuracy, 0:91 F-Score, and 0:96 AUC-ROC by keeping the privacy leakage at 0:02 and communication costs to 12:5 MB, which make it superior to conventional FL techniques. These results affirm Mamba-Fusion as an applications that are secure enough to support collaborative healthcare analytics on a large scale.
准确的疾病预测对于改善患者预后至关重要。诸如通用数据保护条例(GDPR)和健康保险流通与责任法案(HIPAA)等隐私法规限制了数据共享,阻碍了跨机构强大预测模型的开发。联邦学习(FL)和多模态融合框架解决了这些问题,但在可扩展性、客户端间通信和数据模态的异质性方面受到限制。对数据提供隐私保护的技术存在一个问题,即它们会导致性能下降或计算成本高昂。本文提出了用于疾病预测的曼巴融合(Mamba - Fusion),这是一种用于多模态数据的隐私保护框架。它使用分层联邦学习架构来最小化通信成本并改进架构的可扩展性解决方案,以及基于长短期记忆网络(LSTM)层的专家混合(MoE)用于动态时间整合。诸如差分隐私、安全聚合等最新技术也保护了数据及其数据准确性。在多模态临床测量、心电图(ECG)、脑电图(EEG)、临床笔记和人口统计数据上的实验结果支持了所应用的框架。然后,我们使用曼巴融合实现了92.4%的准确率、0.91的F值和0.96的曲线下面积 - 接收器操作特征(AUC - ROC),同时将隐私泄露控制在0.02,通信成本控制在12.5MB,这使其优于传统的联邦学习技术。这些结果证实曼巴融合是一种足够安全以支持大规模协作医疗分析的应用。
Sci Rep. 2025-7-1
Cochrane Database Syst Rev. 2022-5-20
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2016-10-4
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2018-4-17
Cochrane Database Syst Rev. 2012-12-12
Patterns (N Y). 2024-7-19
Sci Rep. 2024-10-6
Comput Struct Biotechnol J. 2024-8-30
J Am Med Inform Assoc. 2024-11-1