文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于隐私保护疾病预测的曼巴融合

Mamba-fusion for privacy-preserving disease prediction.

作者信息

Jabbar Muhammad Kashif, Jianjun Huang, Jabbar Ayesha, Bilal Anas

机构信息

Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, 518060, China.

College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21819. doi: 10.1038/s41598-025-06306-0.


DOI:10.1038/s41598-025-06306-0
PMID:40596404
Abstract

Accurate disease prediction is essential for improving patient outcomes. Privacy regulations like GDPR and HIPAA limit data sharing, hindering the development of robust predictive models across institutions. FL and multi-modal fusion frameworks counter these problems but are restricted in scalability, inter-client communication, and heterogeneity of data modalities. Techniques which provide privacy on data have an issue whereby they cause a reduction in performance or are computationally costly. This paper presents Mamba-Fusion for Disease prediction, a privacy-preserving framework for multi-modal data. It uses a hierarchical FL architecture to minimize the communication costs and improve the architecture's scalability solution and a Mixture of Experts (MoE) with LSTM based layers for dynamic temporal integration. The latest techniques like, differential privacy, secure aggregation protect both the data and its accuracy of the data as well. Experimental results on multi-modal clinical measurements, ECG, EEG, clinical notes, and demographic data support the applied framework. We have then used Mamba-Fusion to achieve 92:4% accuracy, 0:91 F-Score, and 0:96 AUC-ROC by keeping the privacy leakage at 0:02 and communication costs to 12:5 MB, which make it superior to conventional FL techniques. These results affirm Mamba-Fusion as an applications that are secure enough to support collaborative healthcare analytics on a large scale.

摘要

准确的疾病预测对于改善患者预后至关重要。诸如通用数据保护条例(GDPR)和健康保险流通与责任法案(HIPAA)等隐私法规限制了数据共享,阻碍了跨机构强大预测模型的开发。联邦学习(FL)和多模态融合框架解决了这些问题,但在可扩展性、客户端间通信和数据模态的异质性方面受到限制。对数据提供隐私保护的技术存在一个问题,即它们会导致性能下降或计算成本高昂。本文提出了用于疾病预测的曼巴融合(Mamba - Fusion),这是一种用于多模态数据的隐私保护框架。它使用分层联邦学习架构来最小化通信成本并改进架构的可扩展性解决方案,以及基于长短期记忆网络(LSTM)层的专家混合(MoE)用于动态时间整合。诸如差分隐私、安全聚合等最新技术也保护了数据及其数据准确性。在多模态临床测量、心电图(ECG)、脑电图(EEG)、临床笔记和人口统计数据上的实验结果支持了所应用的框架。然后,我们使用曼巴融合实现了92.4%的准确率、0.91的F值和0.96的曲线下面积 - 接收器操作特征(AUC - ROC),同时将隐私泄露控制在0.02,通信成本控制在12.5MB,这使其优于传统的联邦学习技术。这些结果证实曼巴融合是一种足够安全以支持大规模协作医疗分析的应用。

相似文献

[1]
Mamba-fusion for privacy-preserving disease prediction.

Sci Rep. 2025-7-1

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[5]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[8]
Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: a mixed methods review.

Cochrane Database Syst Rev. 2018-4-17

[9]
Psychological interventions for adults who have sexually offended or are at risk of offending.

Cochrane Database Syst Rev. 2012-12-12

[10]
An explainable federated blockchain framework with privacy-preserving AI optimization for securing healthcare data.

Sci Rep. 2025-7-1

本文引用的文献

[1]
Spatial structure and organization of the medical device industry urban network in China: evidence from specialized, refined, distinctive, and innovative firms.

Front Public Health. 2025-3-14

[2]
Improved health outcomes of nasopharyngeal carcinoma patients 3 years after treatment by the AI-assisted home enteral nutrition management.

Front Nutr. 2025-1-7

[3]
BreVamiR3': A comprehensive database for breast cancer-associated genetic variations in miRNA and 3' UTR of their target genes.

Comput Biol Med. 2025-3

[4]
Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI.

Comput Biol Med. 2025-2

[5]
A privacy-preserving approach for cloud-based protein fold recognition.

Patterns (N Y). 2024-7-19

[6]
A retinal detachment based strabismus detection through FEDCNN.

Sci Rep. 2024-10-6

[7]
Privacy-preserving decentralized learning methods for biomedical applications.

Comput Struct Biotechnol J. 2024-8-30

[8]
Privacy-preserving biological age prediction over federated human methylation data using fully homomorphic encryption.

Genome Res. 2024-10-11

[9]
Reliable generation of privacy-preserving synthetic electronic health record time series via diffusion models.

J Am Med Inform Assoc. 2024-11-1

[10]
DP-SSLoRA: A privacy-preserving medical classification model combining differential privacy with self-supervised low-rank adaptation.

Comput Biol Med. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索