Suppr超能文献

开发和验证 2 型糖尿病患者择期手术围手术期低血糖风险预测模型。

Development and validation of a prediction model of perioperative hypoglycemia risk in patients with type 2 diabetes undergoing elective surgery.

机构信息

Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.

出版信息

BMC Surg. 2022 May 10;22(1):167. doi: 10.1186/s12893-022-01601-3.

Abstract

AIM

To develop and validate a prediction model to evaluate the perioperative hypoglycemia risk in hospitalized type 2 diabetes mellitus (T2DM) patients undergoing elective surgery.

METHODS

We retrospectively analyzed the electronic medical records of 1410 T2DM patients who had been hospitalized and undergone elective surgery. Regression analysis was used to develop a predictive model for perioperative hypoglycemia risk. The receiver operating characteristic (ROC) curve and the Hosmer-Lemeshow test were used to verify the model.

RESULTS

Our study showed an incidence of 10.7% for level 1 hypoglycemia and 1.8% for level 2 severe hypoglycemia during the perioperative period. A perioperative hypoglycemic risk prediction model was developed that was mainly composed of four predictors: duration of diabetes ≥ 10 year, body mass index (BMI) < 18.5 kg/m, standard deviation of blood glucose (SDBG) ≥ 3.0 mmol/L, and preoperative hypoglycemic regimen of insulin subcutaneous. Based on this model, patients were categorized into three groups: low, medium, and high risk. Internal validation of the prediction model showed high discrimination (ROC statistic = 0.715) and good calibration (no significant differences between predicted and observed risk: Pearson χ goodness-of-fit P = 0.765).

CONCLUSIONS

The perioperative hypoglycemic risk prediction model categorizes the risk of hypoglycemia using only four predictors and shows good reliability and validity. The model serves as a favorable tool for clinicians to predict hypoglycemic risk and guide future interventions to reduce hypoglycemia risk.

摘要

目的

开发和验证一种预测模型,以评估接受择期手术的住院 2 型糖尿病(T2DM)患者围手术期发生低血糖的风险。

方法

我们回顾性分析了 1410 例接受择期手术的 T2DM 住院患者的电子病历。采用回归分析建立围手术期低血糖风险预测模型。使用受试者工作特征(ROC)曲线和 Hosmer-Lemeshow 检验对模型进行验证。

结果

我们的研究显示,围手术期 1 级低血糖的发生率为 10.7%,2 级严重低血糖的发生率为 1.8%。建立了一种围手术期低血糖风险预测模型,主要由四个预测因素组成:糖尿病病程≥10 年、体重指数(BMI)<18.5kg/m²、血糖标准差(SDBG)≥3.0mmol/L、术前胰岛素皮下降糖方案。根据该模型,患者被分为低、中、高风险三组。预测模型的内部验证显示出较高的区分度(ROC 统计量=0.715)和良好的校准度(预测风险与观察风险之间无显著差异:Pearson χ 拟合优度 P=0.765)。

结论

该围手术期低血糖风险预测模型仅使用四个预测因素对低血糖风险进行分类,具有较好的可靠性和有效性。该模型可作为临床医生预测低血糖风险和指导未来干预措施以降低低血糖风险的有利工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9ff/9092794/1237f4201ef3/12893_2022_1601_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验