Suppr超能文献

利用人工智能增强的生物物理和计算方法探索和学习蛋白质变构的宇宙。

Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches.

机构信息

Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States.

Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology and Information Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China.

出版信息

J Chem Inf Model. 2023 Mar 13;63(5):1413-1428. doi: 10.1021/acs.jcim.2c01634. Epub 2023 Feb 24.

Abstract

Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.

摘要

变构机制是蛋白质用于协调复杂生化过程和控制细胞内通讯的常用调节工具。变构分子事件的定量理解和特征描述是现代生物学的主要挑战之一,需要整合创新的计算实验方法,以获得变构状态、相互作用和动态构象景观的原子水平知识。新兴人工智能 (AI) 技术推动的计算和实验研究不断发展,为从第一性原理探索和学习蛋白质变构的宇宙开辟了新的范例。在这篇综述中,我们分析了变构蛋白功能高通量深度突变扫描的最新进展;Alpha-fold 结构预测方法在研究蛋白质动力学和变构中的应用和最新适应;机器学习和增强采样技术在变构特征描述中的新前沿;以及用于研究变构系统的结构生物学方法的最新进展。我们还强调了最近关于 SARS-CoV-2 刺突 (S) 蛋白的计算和实验研究,揭示了变构调节驱动功能构象变化、与宿主受体结合相互作用以及 S 蛋白突变逃逸机制的重要且常常隐藏的作用,这些对于病毒感染至关重要。我们以总结和展望未来的方向结束,这表明 AI 增强的生物物理和计算机模拟方法开始将蛋白质变构的研究转变为变构景观、隐藏的变构状态和机制的系统特征描述,这可能会给分子生物学和药物发现带来新的革命。

相似文献

4
Machine learning and protein allostery.机器学习与蛋白质变构。
Trends Biochem Sci. 2023 Apr;48(4):375-390. doi: 10.1016/j.tibs.2022.12.001. Epub 2022 Dec 21.

引用本文的文献

1
Uncovering the Role of Distal Regions in PDK1 Allosteric Activation.揭示远端区域在PDK1变构激活中的作用。
ACS Bio Med Chem Au. 2025 Mar 24;5(2):299-309. doi: 10.1021/acsbiomedchemau.5c00025. eCollection 2025 Apr 16.
9
Cell phenotypes can be predicted from propensities of protein conformations.细胞表型可以从蛋白质构象的倾向性来预测。
Curr Opin Struct Biol. 2023 Dec;83:102722. doi: 10.1016/j.sbi.2023.102722. Epub 2023 Oct 21.
10

本文引用的文献

6
A structural biology community assessment of AlphaFold2 applications.AlphaFold2 应用的结构生物学社区评估。
Nat Struct Mol Biol. 2022 Nov;29(11):1056-1067. doi: 10.1038/s41594-022-00849-w. Epub 2022 Nov 7.
9
NMR-guided directed evolution.NMR 引导的定向进化。
Nature. 2022 Oct;610(7931):389-393. doi: 10.1038/s41586-022-05278-9. Epub 2022 Oct 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验