Suppr超能文献

利用深度学习技术测量实验室中斜带石斑鱼个体行为类型的差异。

Measuring inter-individual differences in behavioural types of gilthead seabreams in the laboratory using deep learning.

机构信息

Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.

出版信息

PeerJ. 2022 May 5;10:e13396. doi: 10.7717/peerj.13396. eCollection 2022.

Abstract

Deep learning allows us to automatize the acquisition of large amounts of behavioural animal data with applications for fisheries and aquaculture. In this work, we have trained an image-based deep learning algorithm, the Faster R-CNN (Faster region-based convolutional neural network), to automatically detect and track the gilthead seabream, , to search for individual differences in behaviour. We collected videos using a novel Raspberry Pi high throughput recording system attached to individual experimental behavioural arenas. From the continuous recording during behavioural assays, we acquired and labelled a total of 14,000 images and used them, along with data augmentation techniques, to train the network. Then, we evaluated the performance of our network at different training levels, increasing the number of images and applying data augmentation. For every validation step, we processed more than 52,000 images, with and without the presence of the gilthead seabream, in normal and altered (, after the introduction of a non-familiar object to test for explorative behaviour) behavioural arenas. The final and best version of the neural network, trained with all the images and with data augmentation, reached an accuracy of 92,79% ± 6.78% [89.24-96.34] of correct classification and 10.25 ± 61.59 pixels [6.59-13.91] of fish positioning error. Our recording system based on a Raspberry Pi and a trained convolutional neural network provides a valuable non-invasive tool to automatically track fish movements in experimental arenas and, using the trajectories obtained during behavioural tests, to assay behavioural types.

摘要

深度学习使我们能够自动化获取大量行为动物数据,这些数据可应用于渔业和水产养殖。在这项工作中,我们训练了一种基于图像的深度学习算法,即 Faster R-CNN(更快的基于区域的卷积神经网络),以自动检测和跟踪金头鲷 , 以寻找行为上的个体差异。我们使用一种新的 Raspberry Pi 高通量记录系统将其连接到各个实验行为竞技场,来收集视频。从行为测定的连续记录中,我们总共获取和标记了 14000 张图像,并使用它们以及数据增强技术来训练网络。然后,我们评估了网络在不同训练水平下的性能,增加了图像数量并应用了数据增强。对于每个验证步骤,我们处理了超过 52000 张图像,包括和不包括金头鲷的存在,在正常和改变的行为竞技场中( ,在引入不熟悉的物体以测试探索行为之后)。经过所有图像和数据增强训练的神经网络的最终和最佳版本,达到了 92.79%±6.78%[89.24-96.34]的正确分类准确率和 10.25±61.59 像素[6.59-13.91]的鱼定位误差。我们基于 Raspberry Pi 和训练的卷积神经网络的记录系统为自动跟踪实验竞技场中的鱼类运动提供了有价值的非侵入性工具,并使用行为测试期间获得的轨迹来测定行为类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f88c/9080431/d8314bc7812b/peerj-10-13396-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验