Suppr超能文献

深度学习在环境保护中的应用。

Deep learning for environmental conservation.

机构信息

School of Biological Sciences, University of Adelaide, Adelaide, Australia.

School of Biological Sciences, University of Adelaide, Adelaide, Australia; Betty and Gordon Moore Center for Science, Conservation International, Arlington, VA, USA.

出版信息

Curr Biol. 2019 Oct 7;29(19):R977-R982. doi: 10.1016/j.cub.2019.08.016.

Abstract

The last decade has transformed the field of artificial intelligence, with deep learning at the forefront of this development. With its ability to 'self-learn' discriminative patterns directly from data, deep learning is a promising computational approach for automating the classification of visual, spatial and acoustic information in the context of environmental conservation. Here, we first highlight the current and future applications of supervised deep learning in environmental conservation. Next, we describe a number of technical and implementation-related challenges that can potentially impede the real-world adoption of this technology in conservation programmes. Lastly, to mitigate these pitfalls, we discuss priorities for guiding future research and hope that these recommendations will help make this technology more accessible to environmental scientists and conservation practitioners.

摘要

过去十年见证了人工智能领域的变革,深度学习是这一发展的前沿领域。深度学习具有直接从数据中“自我学习”鉴别模式的能力,是一种很有前途的计算方法,可以实现对环境保护背景下视觉、空间和声学信息的自动化分类。在这里,我们首先强调了监督深度学习在环境保护中的当前和未来应用。其次,我们描述了一些可能会阻碍该技术在保护计划中实际应用的技术和实施相关挑战。最后,为了减轻这些问题,我们讨论了指导未来研究的重点,并希望这些建议将有助于使这项技术更容易被环境科学家和保护从业者所接受。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验