Suppr超能文献

相似文献

1
Boosting the efficiency of single junction kesterite solar cell using Ag mixed CuZnSnS active layer.
RSC Adv. 2018 Jan 29;8(9):4905-4913. doi: 10.1039/c7ra12352c. eCollection 2018 Jan 24.
2
Chemically Deposited CdS Buffer/Kesterite CuZnSnS Solar Cells: Relationship between CdS Thickness and Device Performance.
ACS Appl Mater Interfaces. 2017 Oct 25;9(42):36733-36744. doi: 10.1021/acsami.7b09266. Epub 2017 Oct 16.
3
Improvement of J(sc) in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface.
ACS Appl Mater Interfaces. 2015 Oct 21;7(41):22868-73. doi: 10.1021/acsami.5b05652. Epub 2015 Oct 7.
4
Co-electroplated Kesterite Bifacial Thin-Film Solar Cells: A Study of Sulfurization Temperature.
ACS Appl Mater Interfaces. 2015 May 20;7(19):10414-28. doi: 10.1021/acsami.5b01641. Epub 2015 May 5.
5
Solution-processed CZTS thin films and its simulation study for solar cell applications with ZnTe as the buffer layer.
Environ Sci Pollut Res Int. 2023 Sep;30(44):98671-98681. doi: 10.1007/s11356-022-23664-8. Epub 2022 Oct 26.
7
CuZnSnS monograin layer solar cells for flexible photovoltaic applications.
J Mater Chem A Mater. 2023 Oct 23;11(44):23640-23652. doi: 10.1039/d3ta04541b. eCollection 2023 Nov 14.
8
Ultrathin wide band gap kesterites.
Faraday Discuss. 2022 Oct 28;239(0):38-50. doi: 10.1039/d2fd00052k.
9
Environmentally friendly CuZnSnS-based photocathode modified with a ZnS protection layer for efficient solar water splitting.
J Colloid Interface Sci. 2019 Feb 15;536:9-16. doi: 10.1016/j.jcis.2018.10.032. Epub 2018 Oct 13.
10
Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer.
ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21100-6. doi: 10.1021/acsami.5b04468. Epub 2015 Sep 16.

引用本文的文献

1
Salutary impact of spontaneous oxidation in CHNHSnI on CZTS-based solar cell.
Sci Rep. 2025 Jan 24;15(1):3056. doi: 10.1038/s41598-024-74964-7.
2
Surface plasmon enhanced ultrathin CuZnSnS/crystalline-Si tandem solar cells.
Nanoscale Adv. 2023 Apr 12;5(11):2887-2896. doi: 10.1039/d2na00826b. eCollection 2023 May 30.
3
High-Pressure Behavior and Disorder for AgZnSnS and AgCdSnS.
ACS Omega. 2021 Oct 8;6(41):27387-27395. doi: 10.1021/acsomega.1c04290. eCollection 2021 Oct 19.

本文引用的文献

1
Improved Performance of Electroplated CZTS Thin-Film Solar Cells with Bifacial Configuration.
ChemSusChem. 2016 Aug 23;9(16):2149-58. doi: 10.1002/cssc.201600440. Epub 2016 Jul 11.
3
Characteristics of in-substituted CZTS thin film and bifacial solar cell.
ACS Appl Mater Interfaces. 2014 Dec 10;6(23):21118-30. doi: 10.1021/am505980n. Epub 2014 Nov 6.
4
Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures.
Nanoscale. 2014 Jul 7;6(13):7553-9. doi: 10.1039/c4nr00566j.
5
A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells.
J Am Chem Soc. 2012 Nov 28;134(47):19330-3. doi: 10.1021/ja308862n. Epub 2012 Nov 14.
6
Zinc oxide nanostructures: synthesis and properties.
J Nanosci Nanotechnol. 2005 Oct;5(10):1561-73. doi: 10.1166/jnn.2005.182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验