Craven John, Sultan Mansoor A, Sarma Rupam, Wilson Sarah, Meeks Noah, Kim Doo Young, Hastings J Todd, Bhattacharyya Dibakar
Department of Chemical and Materials Engineering, University of Kentucky 177 FPAT Bldg Lexington KY 40506 USA
Department of Electrical and Computer Engineering, University of Kentucky Lexington KY 40506 USA.
RSC Adv. 2019 Dec 13;9(70):41218-41227. doi: 10.1039/c9ra08747h. eCollection 2019 Dec 9.
The simultaneous elimination of organic waste and the production of clean fuels will have an immense impact on both the society and the industrial manufacturing sector. The enhanced understanding of the interface between nanoparticles and photo-responsive bacteria will further advance the knowledge of their interactions with biological systems. Although literature shows the production of gases by photobacteria, herein, we demonstrated the integration of photonics, biology, and nanostructured plasmonic materials for hydrogen production with a lower greenhouse CO gas content at quantified light energy intensity and wavelength. Phototrophic purple non-sulfur bacteria were able to generate hydrogen as a byproduct of nitrogen fixation using the energy absorbed from visible and near-IR (NIR) light. This type of biological hydrogen production has suffered from low efficiency of converting light energy into hydrogen in part due to light sources that do not exploit the organisms' capacity for NIR absorption. We used NIR light sources and optically resonant gold-silica core-shell nanoparticles to increase the light utilization of the bacteria to convert waste organic acids such as acetic and maleic acids to hydrogen. The batch growth studies for the small cultures (40 mL) of demonstrated >2.5-fold increase in hydrogen production when grown under an NIR source (167 ± 18 μmol H) compared to that for a broad-band light source (60 ± 6 μmol H) at equal light intensity (130 W m). The addition of the mPEG-coated optically resonant gold-silica core-shell nanoparticles in the solution further improved the hydrogen production from 167 ± 18 to 398 ± 108 μmol H at 130 W m. The average hydrogen production rate with the nanoparticles was 127 ± 35 μmol L h at 130 W m.
同时消除有机废物并生产清洁燃料将对社会和工业制造业产生巨大影响。对纳米颗粒与光响应细菌之间界面的深入理解将进一步推进我们对它们与生物系统相互作用的认识。尽管文献表明光细菌可产生气体,但在此我们展示了光子学、生物学和纳米结构等离子体材料的整合,以在定量的光能强度和波长下生产温室气体含量较低的氢气。光合紫色非硫细菌能够利用从可见光和近红外(NIR)光吸收的能量,将氢气作为固氮的副产物产生。这种生物制氢方式部分由于光源未充分利用生物体对近红外吸收的能力,导致光能转化为氢气的效率较低。我们使用近红外光源和光学共振金 - 二氧化硅核壳纳米颗粒来提高细菌对光的利用率,将乙酸和马来酸等废有机酸转化为氢气。对小培养物(40 mL)的分批生长研究表明,在近红外光源(167 ± 18 μmol H)下生长时,与在相同光强(130 W m)的宽带光源(60 ± 6 μmol H)下相比,氢气产量增加了2.5倍以上。在溶液中添加甲氧基聚乙二醇(mPEG)包覆的光学共振金 - 二氧化硅核壳纳米颗粒,在130 W m时进一步将氢气产量从167 ± 18 μmol H提高到398 ± 108 μmol H。在130 W m时,使用纳米颗粒的平均产氢速率为127 ± 35 μmol L h。