Umukoro Eseoghene H, Peleyeju Moses G, Idris Azeez O, Ngila Jane C, Mabuba Nonhlangabezo, Rhyman Lydia, Ramasami Ponnadurai, Arotiba Omotayo A
Department of Applied Chemistry, University of Johannesburg South Africa
Centre for Nanomaterials Science Research, University of Johannesburg South Africa.
RSC Adv. 2018 Mar 13;8(19):10255-10266. doi: 10.1039/c8ra00180d.
A novel Pd-ZnO-expanded graphite (EG) photoelectrode was constructed from a Pd-ZnO-EG nanocomposite synthesised by a hydrothermal method and characterised using various techniques such as X-ray diffractometry (XRD), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Cyclic voltammetry and photocurrent response measurements were also carried out on the electrode. The Pd-ZnO-EG electrode was employed in the photoelectrocatalytic removal of 4-nitrophenol as a target water pollutant at a neutral pH and with a current density of 7 mA cm. Optical studies revealed that the Pd-ZnO-EG absorbed strongly in the visible light region. The Pd-ZnO-EG electrode showed improved photoelectrocatalytic activity in relation to ZnO-EG and EG electrodes for the removal of the 4-nitrophenol. The photocurrent responses showed that the Pd-ZnO-EG nanocomposite electrode could be employed as a good photoelectrode for photoelectrocatalytic processes and environmental remediation such as treatment of industrial waste waters. Density functional theory method was used to model the oxidative degradation of 4-nitrophenol by the hydroxyl radical which generates hydroquinone, benzoquinone, 4-nitrocatechol, 4-nitroresorcinol and the opening of the 4-nitrophenol ring. Furthermore, the hydroxyl radical is regenerated and can further oxidise the ring structure and initiate a new degradation process.
通过水热法合成了一种新型的钯-氧化锌-膨胀石墨(EG)光电极,该电极由钯-氧化锌-EG纳米复合材料构成,并采用多种技术进行表征,如X射线衍射仪(XRD)、拉曼光谱、紫外-可见漫反射光谱、氮吸附-脱附分析、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和能量色散光谱(EDS)。还对该电极进行了循环伏安法和光电流响应测量。钯-氧化锌-EG电极用于在中性pH值和7 mA cm的电流密度下光催化去除目标水污染物4-硝基苯酚。光学研究表明,钯-氧化锌-EG在可见光区域有强烈吸收。与氧化锌-EG和EG电极相比,钯-氧化锌-EG电极在去除4-硝基苯酚方面表现出更高的光催化活性。光电流响应表明,钯-氧化锌-EG纳米复合电极可作为光催化过程和环境修复(如处理工业废水)的优良光电极。采用密度泛函理论方法模拟了羟基自由基对4-硝基苯酚的氧化降解过程,该过程生成对苯二酚、苯醌、4-硝基邻苯二酚、4-硝基间苯二酚以及4-硝基苯酚环的开环。此外,羟基自由基得以再生,并可进一步氧化环结构,引发新的降解过程。