Li Shuya, Lin Hanjie, Chu Chun, Martin Chandler, MacSwain Walker, Meulenberg Robert W, Franck John M, Chakraborty Arindam, Zheng Weiwei
Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States.
Department of Physics, Syracuse University, Syracuse, New York 13244, United States.
ACS Nano. 2023 Nov 28;17(22):22467-22477. doi: 10.1021/acsnano.3c05876. Epub 2023 Nov 14.
All-inorganic metal halide perovskites (ABX, X = Cl, Br, or I) show great potential for the fabrication of optoelectronic devices, but the toxicity and instability of lead-based perovskites limit their applications. Shell passivation with a more stable lead-free perovskite is a promising strategy to isolate unstable components from the environment as well as a feasible way to tune the optical properties. However, it is challenging to grow core/shell perovskite nanocrystals (NCs) due to the soft ionic nature of the perovskite lattice. In this work, we developed a facile method to grow a lead-free CsMnCl shell on the surface of CsPbCl NCs to form CsPbCl/CsMnCl core/shell NCs with enhanced environmental stability and improved photoluminescence (PL) quantum yields (QYs). More importantly, the resulting core/shell perovskite NCs have color-tunable PL due to B-site ion diffusion at the interface of the core/shell NCs. Specifically, B-site Mn diffusion from the CsMnCl shell to the CsPbCl core leads to a Mn-doped CsPbCl core (i.e., Mn:CsPbCl), which can turn on the Mn PL at around 600 nm. The ratio of Mn PL and host CsPbCl PL is highly tunable as a function of the thermal annealing time of the CsPbCl/CsMnCl core/shell NCs. While the halide anion exchange for all-inorganic metal halide perovskites has been well-developed for band-gap-engineered materials, interfacial B-site diffusion in core/shell perovskite NCs is a promising approach for both tunable optical properties and enhanced environmental stability.
全无机金属卤化物钙钛矿(ABX,X = Cl、Br或I)在光电器件制造方面显示出巨大潜力,但铅基钙钛矿的毒性和不稳定性限制了它们的应用。用更稳定的无铅钙钛矿进行壳层钝化是一种将不稳定成分与环境隔离的有前景的策略,也是调节光学性质的可行方法。然而,由于钙钛矿晶格的软离子性质,生长核/壳钙钛矿纳米晶体(NCs)具有挑战性。在这项工作中,我们开发了一种简便的方法,在CsPbCl NCs表面生长无铅CsMnCl壳层,以形成具有增强环境稳定性和改善光致发光(PL)量子产率(QYs)的CsPbCl/CsMnCl核/壳NCs。更重要的是,由于核/壳NCs界面处的B位离子扩散,所得的核/壳钙钛矿NCs具有颜色可调的PL。具体而言,B位Mn从CsMnCl壳层扩散到CsPbCl核中导致形成Mn掺杂的CsPbCl核(即Mn:CsPbCl),其可在约600 nm处开启Mn PL。Mn PL与主体CsPbCl PL的比例可作为CsPbCl/CsMnCl核/壳NCs热退火时间的函数进行高度调节。虽然全无机金属卤化物钙钛矿的卤化物阴离子交换已在带隙工程材料方面得到了很好的发展,但核/壳钙钛矿NCs中的界面B位扩散对于可调光学性质和增强环境稳定性而言是一种有前景的方法。