Suppr超能文献

通过基于深度学习的MSOT数据分割和面向信号的分析对临床生物标志物药代动力学进行空间定量。

Spatial quantification of clinical biomarker pharmacokinetics through deep learning-based segmentation and signal-oriented analysis of MSOT data.

作者信息

Hoffmann Bianca, Gerst Ruman, Cseresnyés Zoltán, Foo WanLing, Sommerfeld Oliver, Press Adrian T, Bauer Michael, Figge Marc Thilo

机构信息

Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.

Faculty of Biological Sciences, Friedrich Schiller University Jena, Bachstr. 18k, 07743 Jena, Germany.

出版信息

Photoacoustics. 2022 Apr 26;26:100361. doi: 10.1016/j.pacs.2022.100361. eCollection 2022 Jun.

Abstract

Although multispectral optoacoustic tomography (MSOT) significantly evolved over the last several years, there is a lack of quantitative methods for analysing this type of image data. Current analytical methods characterise the MSOT signal in manually defined regions of interest outlining selected tissue areas. These methods demand expert knowledge of the sample anatomy, are time consuming, highly subjective and prone to user bias. Here we present our fully automated open-source MSOT cluster analysis toolkit that was designed to overcome these shortcomings. It employs a deep learning-based approach for initial image segmentation followed by unsupervised machine learning to identify regions of similar signal kinetics. It provides an objective and automated approach to quantify the pharmacokinetics and extract the biodistribution of biomarkers from MSOT data. We exemplify our generally applicable analysis method by quantifying liver function in a preclinical sepsis model whilst highlighting the advantages of our new approach compared to the severe limitations of existing analysis procedures.

摘要

尽管多光谱光声断层扫描(MSOT)在过去几年中有了显著发展,但仍缺乏用于分析此类图像数据的定量方法。当前的分析方法在手动定义的感兴趣区域中对MSOT信号进行表征,这些区域勾勒出选定的组织区域。这些方法需要样本解剖学的专业知识,耗时且主观性强,容易出现用户偏差。在此,我们展示了我们的全自动开源MSOT聚类分析工具包,该工具包旨在克服这些缺点。它采用基于深度学习的方法进行初始图像分割,然后通过无监督机器学习来识别具有相似信号动力学的区域。它提供了一种客观且自动化的方法来量化药代动力学并从MSOT数据中提取生物标志物的生物分布。我们通过在临床前脓毒症模型中量化肝功能来举例说明我们的通用分析方法,同时突出我们新方法相对于现有分析程序严重局限性的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a918/9079355/75deef6f4f84/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验