Lescano Mariela I, Gasnier Aurelien, Pedano Maria L, Sica Mauricio P, Pasquevich Daniel M, Prados Maria B
Instituto de Energia y Desarrollo Sustentable, Centro Atomico Bariloche, Comision Nacional de Energia Atomica Av. E. Bustillo 9500, 8400 S. C. de Bariloche Rio Negro Argentina
Gerencia de Investigacion Aplicada, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, CONICET Av. E. Bustillo 9500, 8400 S. C. de Bariloche Rio Negro Argentina.
RSC Adv. 2018 Jul 26;8(47):26755-26763. doi: 10.1039/c8ra03846e. eCollection 2018 Jul 24.
In this work, we report a simple and scalable method to produce high efficiency 3D graphene-based electrodes (GH) for bioelectrochemical systems. GH were obtained by self-assembly of graphene oxide, through slow reduction with ascorbic acid over conductive mesh-works (carbon cloth and stainless-steel). The GH structure and composition were characterised by electron microscopy (SEM) and spectroscopy (FTIR and Raman), whereas the electrodes' performance was tested by chronoamperometry and cyclic voltammetry in a microbial electrolysis cell (MEC) inoculated with a pure culture of . The hydrogel had a broad pore size distribution (>1 μm), which allowed bacterial colonisation within the framework. The macro-porous structure and chemical properties of the hydrogel rendered a higher bacterial loading capacity and substrate oxidation rate than other carbonaceous materials, including different reported graphene electrodes, which significantly increased MEC performance.
在本工作中,我们报道了一种简单且可扩展的方法,用于制备用于生物电化学系统的高效三维石墨烯基电极(GH)。通过氧化石墨烯的自组装,在导电网络(碳布和不锈钢)上用抗坏血酸缓慢还原获得GH。通过电子显微镜(SEM)和光谱学(FTIR和拉曼)对GH的结构和组成进行了表征,而电极性能则通过计时电流法和循环伏安法在接种了纯培养物的微生物电解池(MEC)中进行测试。该水凝胶具有较宽的孔径分布(>1μm),这使得细菌能够在框架内定殖。与其他含碳材料(包括不同报道的石墨烯电极)相比,水凝胶的大孔结构和化学性质使其具有更高的细菌负载能力和底物氧化速率,这显著提高了MEC的性能。