Suppr超能文献

基于金属有机框架的纳米多孔碳纳米棒自模板构建用于超级电容器电极

Self-template construction of nanoporous carbon nanorods from a metal-organic framework for supercapacitor electrodes.

作者信息

Yang Ya-Wen, Liu Xuan-He, Gao En-Peng, Feng Tian-Tian, Jiang Wen-Jie, Wu Jing, Jiang Hao, Sun Bing

机构信息

School of Science, China University of Geosciences (Beijing) Beijing 100083 China

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China.

出版信息

RSC Adv. 2018 Jun 6;8(37):20655-20660. doi: 10.1039/c8ra03650k. eCollection 2018 Jun 5.

Abstract

The morphologies and structures of nanostructured carbons generally influence their catalysis, electrochemical performance and adsorption properties. Metal-organic framework (MOF) nanocrystals usually have various morphologies, and can be considered as a template to construct nanostructured carbons with shaped nanocubes, nanorods, and hollow particles by thermal transformation. However, thermal carbonization of MOFs usually leads to collapse of MOF structures. Here, we report shape-preserved carbons (termed as CNRods) by thermal transformation of nickel catecholate framework (Ni-CAT) nanorods. Supercapacitors of CNRods treated at 800 °C were demonstrated to have enhanced performance due to their structural features that facilitate electron conduction and ion transport as well as abundant O content benefiting the wettability of the carbon materials. This may provide a potential way to explore novel carbon materials for supercapacitors with controllable morphologies and high capacitive performance.

摘要

纳米结构碳的形态和结构通常会影响其催化、电化学性能及吸附特性。金属有机框架(MOF)纳米晶体通常具有多种形态,并且可以被视作一种模板,通过热转化来构建具有特定形状的纳米立方体、纳米棒和空心颗粒的纳米结构碳。然而,MOF的热碳化通常会导致MOF结构的坍塌。在此,我们报道了通过对儿茶酚镍框架(Ni-CAT)纳米棒进行热转化而得到的形状保持碳(称为CNRod)。经800℃处理的CNRod超级电容器因其结构特征而展现出增强的性能,这些结构特征有助于电子传导和离子传输,以及丰富的氧含量有利于碳材料的润湿性。这可能为探索具有可控形态和高电容性能的超级电容器新型碳材料提供一条潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd73/9080818/01eb70e5ab76/c8ra03650k-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验