Huang Chuanhui, Sun Weiming, Jin Yingxue, Guo Quanquan, Mücke David, Chu Xingyuan, Liao Zhongquan, Chandrasekhar Naisa, Huang Xing, Lu Yang, Chen Guangbo, Wang Mingchao, Liu Jinxin, Zhang Geping, Yu Minghao, Qi Haoyuan, Kaiser Ute, Xu Gang, Feng Xinliang, Dong Renhao
Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China.
Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202313591. doi: 10.1002/anie.202313591. Epub 2023 Dec 15.
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) are emerging as a unique subclass of layer-stacked crystalline coordination polymers that simultaneously possess porous and conductive properties, and have broad application potential in energy and electronic devices. However, to make the best use of the intrinsic electronic properties and structural features of 2D c-MOFs, the controlled synthesis of hierarchically nanostructured 2D c-MOFs with high crystallinity and customized morphologies is essential, which remains a great challenge. Herein, we present a template strategy to synthesize a library of 2D c-MOFs with controlled morphologies and dimensions via insulating MOFs-to-c-MOFs transformations. The resultant hierarchically nanostructured 2D c-MOFs feature intrinsic electrical conductivity and higher surface areas than the reported bulk-type 2D c-MOFs, which are beneficial for improved access to active sites and enhanced mass transport. As proof-of-concept applications, the hierarchically nanostructured 2D c-MOFs exhibit a superior performance for electrical properties related applications (hollow Cu-BHT nanocubes-based supercapacitor and Cu-HHB nanoflowers-based chemiresistive gas sensor), achieving over 225 % and 250 % improvement in specific capacity and response intensity over the corresponding bulk type c-MOFs, respectively.
二维共轭金属有机框架(2D c-MOFs)作为层状堆积晶体配位聚合物的一个独特子类正在兴起,它同时具有多孔性和导电性,在能源和电子设备中具有广阔的应用潜力。然而,为了充分利用2D c-MOFs的固有电子特性和结构特征,可控合成具有高结晶度和定制形态的分级纳米结构2D c-MOFs至关重要,而这仍然是一个巨大的挑战。在此,我们提出一种模板策略,通过绝缘MOFs到c-MOFs的转变来合成一系列具有可控形态和尺寸的2D c-MOFs。所得的分级纳米结构2D c-MOFs具有固有导电性,且比已报道的块状2D c-MOFs具有更高的表面积,这有利于改善活性位点的可达性并增强传质。作为概念验证应用,分级纳米结构2D c-MOFs在与电性能相关的应用(基于空心Cu-BHT纳米立方体的超级电容器和基于Cu-HHB纳米花的化学电阻式气体传感器)中表现出卓越性能,其比容量和响应强度分别比相应的块状c-MOFs提高了超过225%和250%。