Tong Chunyi, Zou Wei, Ning Weimin, Fan Jialong, Li Li, Liu Bin, Liu Xuanming
College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University Changsha 410082 PR China
Key Laboratory of Hunan Provincial TCM Administration for TCM in Obstetrics & Gynecology, Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 PR China.
RSC Adv. 2018 Aug 7;8(49):28238-28248. doi: 10.1039/c8ra04933e. eCollection 2018 Aug 2.
The occurrence of antibiotic resistance against pathogens is rapidly increasing and endangering the efficacy of antibiotics. Thus, finding a way to address this problem has become a major challenge due to the inability of conventional antibiotics to kill these multidrug-resistant bacteria. In order to further enhance the antibacterial ability and reduce the possibility of antibiotic resistance, we developed a simple two-step approach and synthesized a new nanocomposite by directly loading single-stranded DNA (ssDNA)-guided silver nanoparticles (AgNPs) on graphene oxide (ssDNA-AgNPs@GO). Through systematically evaluating the bactericidal activity and wound healing capability, we found that ssDNA-AgNPs@GO exhibited synergistic antibacterial activity against , , and with low minimum inhibitory concentrations (6.8 μg mL, 6.8 μg mL, 11.9 μg mL and 10.2 μg mL, respectively) and large-diameter inhibition zones (12.83 ± 0.63 mm, 13.14 ± 0.37 mm, 8.6 ± 0.9 mm and 8.93 ± 0.47 mm, respectively). Furthermore, the wound healing experiment indicated that it has a striking ability to remedy wound infection caused by bacteria. In conclusion, the properties of ssDNA-AgNPs@GO with enhanced antibacterial and wound healing capability will give it broad applications in the future.
病原体对抗生素的耐药性正在迅速增加,危及抗生素的疗效。因此,由于传统抗生素无法杀死这些多重耐药细菌,找到解决这一问题的方法已成为一项重大挑战。为了进一步提高抗菌能力并降低抗生素耐药性的可能性,我们开发了一种简单的两步法,通过将单链DNA(ssDNA)引导的银纳米颗粒(AgNPs)直接负载在氧化石墨烯上,合成了一种新型纳米复合材料(ssDNA-AgNPs@GO)。通过系统评估杀菌活性和伤口愈合能力,我们发现ssDNA-AgNPs@GO对金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌具有协同抗菌活性,最低抑菌浓度较低(分别为6.8 μg/mL、6.8 μg/mL、11.9 μg/mL和10.2 μg/mL),抑菌圈直径较大(分别为12.83±0.63 mm、13.14±0.37 mm、8.6±0.9 mm和8.93±0.47 mm)。此外,伤口愈合实验表明,它具有显著的能力来治疗由金黄色葡萄球菌引起的伤口感染。总之,具有增强抗菌和伤口愈合能力的ssDNA-AgNPs@GO的特性将使其在未来具有广泛的应用。