Zhang Fan, Hu Yufeng, Lou Zhidong, Xin Xige, Zhang Meng, Hou Yanbing, Teng Feng
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University Beijing 100044 China
RSC Adv. 2018 Mar 21;8(21):11272-11279. doi: 10.1039/c7ra13143g.
The properties of semiconductor/dielectric interfaces are crucial to the performance of polymer field-effect transistors. The key to fabricating high-performance polymer transistors by spin-coating is solving solvent corrosion issues, wherein the solvent of the top polymer produces a rough interface or damage on the underlying polymer layer during deposition. Herein, we propose a mixed-solvent method that employs a mixture of an orthogonal solvent of the underlying polymer and a good solvent of the top polymer as the solvent of the top polymer to prepare polymer bilayers and produce a comparative study of the trap density at the semiconductor/dielectric interface of the corresponding transistor. By changing the ratio of orthogonal solvent to good solvent, namely the degree of orthogonality of the mixed solvent with respect to the underlying polymer, the interface and film qualities of polymer bilayers can be well controlled. We applied this method to spin-coat poly(3-hexylthiophene) (P3HT) on poly(methylmethacrylate) (PMMA) with a mixture of cyclohexane (orthogonal solvent) and chloroform (good solvent). The results of morphology characterizations and electrical property studies indicate the optimal ratio of cyclohexane to chloroform for preparing high-quality P3HT/PMMA bilayers for field-effect conduction is 7 : 3. Transistors based on the optimal bilayers with a bottom-gate/top-contact configuration and a long channel length show good performance. The trap density at the P3HT/PMMA interface is evaluated to be 3.6 × 10 cm eV from the subthreshold swing, characterizing the distribution of the interface trap levels across the bandgap in P3HT. Furthermore, based on deviations from ideality in the capacitance-voltage characteristics of the metal-insulator-semiconductor capacitor in the device, the traps at the interface are found to be acceptor-type, with the trap density determined to be 2.3 × 10 cm. This value is in a good agreement with that estimated from the subthreshold swing.
半导体/电介质界面的性质对于聚合物场效应晶体管的性能至关重要。通过旋涂制备高性能聚合物晶体管的关键在于解决溶剂腐蚀问题,即在沉积过程中,顶层聚合物的溶剂会对下层聚合物层产生粗糙界面或造成损伤。在此,我们提出一种混合溶剂法,该方法采用下层聚合物的正交溶剂与顶层聚合物的良溶剂的混合物作为顶层聚合物的溶剂来制备聚合物双层膜,并对相应晶体管的半导体/电介质界面处的陷阱密度进行比较研究。通过改变正交溶剂与良溶剂的比例,即混合溶剂相对于下层聚合物的正交程度,可以很好地控制聚合物双层膜的界面和薄膜质量。我们将此方法应用于在聚甲基丙烯酸甲酯(PMMA)上旋涂聚(3-己基噻吩)(P3HT),使用环己烷(正交溶剂)和氯仿(良溶剂)的混合物。形态表征和电学性能研究结果表明,用于场效应传导的高质量P3HT/PMMA双层膜的环己烷与氯仿的最佳比例为7∶3。基于具有底栅/顶接触配置和长沟道长度的最佳双层膜的晶体管表现出良好的性能。从亚阈值摆幅评估得出P3HT/PMMA界面处的陷阱密度为3.6×10 cm eV,表征了P3HT中界面陷阱能级在带隙中的分布。此外,基于器件中金属-绝缘体-半导体电容器的电容-电压特性与理想情况的偏差,发现界面处的陷阱为受主型,陷阱密度确定为2.3×10 cm 。该值与从亚阈值摆幅估计的值非常吻合。