Suppr超能文献

多阶段实验中的估计的客观贝叶斯方法。

An objective Bayesian approach to estimation in multistage experiments.

机构信息

Laboratoires Pierre Fabre, Toulouse, France.

出版信息

Stat Methods Med Res. 2022 Aug;31(8):1579-1589. doi: 10.1177/09622802221099640. Epub 2022 May 11.

Abstract

This article presents a Bayesian approach to estimation in multistage experiments based on the reference prior theory. The idea of deriving design-dependent priors was first introduced using Jeffreys' criterion. A theoretical framework was then established by showing that explicit reference to the design is fully Bayesian justified and Bayesian objectivity cannot ignore such information. Extending the work to multi-parameter problems, a general form of priors was derived from the reference prior theory. In this article, I evidence the good frequentist properties of the reference posterior estimators with normally distributed data. As a notable advance, I address the issue of the point and the interval estimations upon experiment termination. The approach is applied to a data set collected in a clinical trial in schizophrenia with the possibility to stop the trial early if interim results provide sufficient evidence of efficacy or futility. Finally, I discuss the idea of using the reference posterior estimators as a default choice for objective estimation in multistage experiment.

摘要

本文提出了一种基于参考先验理论的多阶段实验估计的贝叶斯方法。首先使用杰弗里斯准则引入了导出设计相关先验的思想。然后通过表明对设计的明确参考是完全贝叶斯合理的,并且贝叶斯客观性不能忽略此类信息,从而建立了一个理论框架。将这项工作扩展到多参数问题,从参考先验理论中推导出了一般形式的先验。在本文中,我用正态分布数据证明了参考后验估计量的良好频率性质。作为一个显著的进展,我解决了在实验结束时进行点估计和区间估计的问题。该方法应用于精神分裂症临床试验中收集的数据集,如果中期结果提供了足够的疗效或无效的证据,则可以提前终止试验。最后,我讨论了将参考后验估计量用作多阶段实验中客观估计的默认选择的想法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验