Suppr超能文献

双腔介质调制铁电电荷等离子体隧道场效应晶体管作为生物传感器:用于提高灵敏度。

Dual Cavity Dielectric Modulated Ferroelectric Charge Plasma Tunnel FET as Biosensor: For Enhanced Sensitivity.

作者信息

Singh Shradhya, Singh Sangeeta, Mohammed Mustafa K A, Wadhwa Girish

出版信息

IEEE Trans Nanobioscience. 2023 Jan;22(1):182-191. doi: 10.1109/TNB.2022.3174266. Epub 2022 Dec 29.

Abstract

This work reports a biosensor based on the dual cavity dielectric modulated ferroelectric charge plasma Tunnel FET (FE-CP-TFET) with enhanced sensitivity. By incorporating underlap and dielectric modulation phenomena, ultra sensitive, and label-free detection of biomolecules is achieved. The cavity is carved underneath the source-gate dielectric for the immobilization of the biomolecules. The ferroelectric (FE) material is used as a gate stack to realize a negative capacitance effect to amplify the low gate voltage. To avoid the issues with metallurgical doping such as random dopant fluctuations (RDFs), ambipolar conduction, and increased thermal budget, the charge plasma concept is deployed. Based on our exhaustive ATLAS 2D TCAD study, the electric field, hole concentration, and energy band diagram of the proposed device are critically analyzed to provide a better insight into the biosensor working mechanism. Here, two different figures-of merits (FOMs) for the proposed biosensor are investigated such as sensitivity and linearity. Sensitivity has been measured in terms of drain current, [Formula: see text] to [Formula: see text] ratio, electric field, and transconductance sensitivity. Linearity analysis of the proposed structure includes [Formula: see text] ratio. The reported biosensor is capable of detecting several biomolecules such as (neutral and charged as well) Streptavidin (2.1), 3-aminopropyltriethoxysilane (APTES) (K =3.57 ), Keratin (K =8 ), T7 (K =6.3 ) and Gelatin (K =12 ). It was observed that the optimized cavity structure demonstrates high drain current sensitivity ( 2.7×10 ) as well as high [Formula: see text] sensitivity ( 1.45×10 ). Further, the linearity analysis shows that the Pearson's coefficient of both structures have been achieved as ( r ≥ 0.8 ). It is conferred from the results that our biosensor can be a better alternative for the detection of the various neutral and charged biomolecules.

摘要

这项工作报道了一种基于双腔介质调制铁电电荷等离子体隧道场效应晶体管(FE-CP-TFET)的生物传感器,其具有增强的灵敏度。通过结合非重叠和介质调制现象,实现了对生物分子的超灵敏、无标记检测。该腔在源极-栅极介质下方刻蚀而成,用于固定生物分子。铁电(FE)材料用作栅极堆叠以实现负电容效应,从而放大低栅极电压。为避免诸如随机掺杂波动(RDFs)、双极性传导和增加的热预算等冶金掺杂问题,采用了电荷等离子体概念。基于我们详尽的ATLAS 2D TCAD研究,对所提出器件的电场、空穴浓度和能带图进行了严格分析,以更好地洞察生物传感器的工作机制。在此,研究了所提出生物传感器的两个不同的品质因数(FOMs),即灵敏度和线性度。灵敏度已根据漏极电流、[公式:见原文]与[公式:见原文]的比率、电场和跨导灵敏度进行测量。所提出结构的线性度分析包括[公式:见原文]比率。报道的生物传感器能够检测多种生物分子,如(中性和带电荷的)链霉亲和素(2.1)、3-氨丙基三乙氧基硅烷(APTES)(K = 3.57)、角蛋白(K = 8)、T7(K = 6.3)和明胶(K = 12)。观察到优化后的腔结构表现出高漏极电流灵敏度(2.7×10)以及高[公式:见原文]灵敏度(1.45×10)。此外,线性度分析表明两种结构的皮尔逊系数均已达到(r≥0.8)。结果表明,我们的生物传感器可以成为检测各种中性和带电荷生物分子的更好选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验