School of Biological Sciences, University of Kent, Canterbury CT2 7NH, U.K.
Biosci Rep. 2022 Jun 30;42(6). doi: 10.1042/BSR20220403.
In bacteria, nucleotide excision repair (NER) plays a major role in repairing DNA damage from a wide variety of sources. Therefore, its inhibition offers potential to develop a new antibacterial in combination with adjuvants, such as UV light. To date, only one known chemical inhibitor of NER is 2-(5-amino-1,3,4-thiadiazol-2-yl)benzo(f)chromen-3-one (ATBC) exists and targets Mycobacterium tuberculosis NER. To enable the design of future drugs, we need to understand its mechanism of action. To determine the mechanism of action, we used in silico structure-based prediction, which identified the ATP-binding pocket of Escherichia coli UvrA as a probable target. Growth studies in E. coli showed it was nontoxic alone, but able to impair growth when combined with DNA-damaging agents, and as we predicted, it reduced by an approximately 70% UvrA's ATPase rate. Since UvrA's ATPase activity is necessary for effective DNA binding, we used single-molecule microscopy to directly observe DNA association. We measured an approximately sevenfold reduction in UvrA molecules binding to a single molecule of dsDNA suspended between optically trapped beads. These data provide a clear mechanism of action for ATBC, and show that targeting UvrA's ATPase pocket is effective and ATBC provides an excellent framework for the derivation of more soluble inhibitors that can be tested for activity.
在细菌中,核苷酸切除修复(NER)在修复来自各种来源的 DNA 损伤方面起着重要作用。因此,其抑制作用为与佐剂(如紫外线)联合开发新型抗菌药物提供了潜力。迄今为止,只有一种已知的 NER 化学抑制剂 2-(5-氨基-1,3,4-噻二唑-2-基)苯并[f]色烯-3-酮(ATBC)存在,并且靶向结核分枝杆菌 NER。为了能够设计未来的药物,我们需要了解其作用机制。为了确定作用机制,我们使用了基于结构的计算机模拟预测,该预测确定了大肠杆菌 UvrA 的 ATP 结合口袋是一个可能的靶标。大肠杆菌的生长研究表明,它单独使用时没有毒性,但与 DNA 损伤剂联合使用时能够损害生长,正如我们所预测的,它使 UvrA 的 ATP 酶速率降低了约 70%。由于 UvrA 的 ATP 酶活性对于有效 DNA 结合是必需的,我们使用单分子显微镜直接观察 DNA 结合。我们测量到,与悬浮在光阱珠之间的单分子 dsDNA 结合的 UvrA 分子减少了约七倍。这些数据为 ATBC 提供了明确的作用机制,并表明靶向 UvrA 的 ATP 酶口袋是有效的,并且 ATBC 为开发更易溶于水的抑制剂提供了极好的框架,这些抑制剂可以进行活性测试。