Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
Biomed Res Int. 2022 May 2;2022:1617989. doi: 10.1155/2022/1617989. eCollection 2022.
Pancreatic cancer (PC) is considered a silent killer because it does not show specific symptoms at an early stage. Thus, identifying suitable biomarkers is important to avoid the burden of PC. Stratifin (SFN) encodes the 14-3-3 protein, which is expressed in a tissue-dependent manner and plays a vital role in cell cycle regulation. Thus, SFN could be a promising therapeutic target for several types of cancer. This study was aimed at investigating, using online bioinformatics tools, whether SFN could be used as a diagnostic and prognostic biomarker in PC. SFN expression was explored by utilizing the ONCOMINE, UALCAN, GEPIA2, and GENT2 tools, which revealed that SFN expression is higher in PC than in normal tissues. The clinicopathological analysis using the ULCAN tool showed that the intensity of SFN expression is commensurate with cancer progression. GEPIA2, R2, and OncoLnc revealed a negative correlation between SFN expression and survival probability in PC patients. The ONCOMINE, UCSC Xena, and GEPIA2 tools showed that cofilin 1 is strongly coexpressed with SFN. Moreover, enrichment and network analyses of SFN were performed using the Enrichr and NetworkAnalyst platforms, respectively. Receiver operating characteristic (ROC) curves revealed that tissue-dependent expression of the SFN gene could serve as a diagnostic and prognostic biomarker. However, further wet laboratory studies are necessary to determine the relevance of SFN expression as a biomarker.
胰腺癌(PC)被认为是一种“沉默杀手”,因为它在早期阶段没有表现出特定的症状。因此,鉴定合适的生物标志物对于避免 PC 的负担非常重要。Stratifin (SFN) 编码 14-3-3 蛋白,该蛋白以组织依赖性方式表达,在细胞周期调控中发挥重要作用。因此,SFN 可能成为几种癌症的有前途的治疗靶点。本研究旨在利用在线生物信息学工具研究 SFN 是否可作为 PC 的诊断和预后生物标志物。通过使用 ONCOMINE、UALCAN、GEPIA2 和 GENT2 工具探索 SFN 的表达,结果表明 SFN 在 PC 中的表达高于正常组织。通过 ULCAN 工具进行的临床病理分析表明,SFN 表达的强度与癌症进展一致。GEPIA2、R2 和 OncoLnc 揭示了 SFN 表达与 PC 患者生存概率之间呈负相关。ONCOMINE、UCSC Xena 和 GEPIA2 工具表明,原肌球蛋白 1 与 SFN 强烈共表达。此外,还使用 Enrichr 和 NetworkAnalyst 平台分别对 SFN 的富集和网络分析进行了分析。接收器操作特征 (ROC) 曲线表明,SFN 基因的组织依赖性表达可以作为诊断和预后生物标志物。然而,需要进一步的湿实验室研究来确定 SFN 表达作为生物标志物的相关性。