Wang Hao, Wu Yue, Zou Quchao, Yang Wenjian, Xu Zhongyuan, Dong Hao, Zhu Zhijing, Wang Depeng, Wang Tianxing, Hu Ning, Zhang Diming
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006 China.
Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, 311121 China.
Microsyst Nanoeng. 2022 May 9;8:49. doi: 10.1038/s41378-022-00383-1. eCollection 2022.
Cardiovascular disease is the number one cause of death in humans. Therefore, cardiotoxicity is one of the most important adverse effects assessed by arrhythmia recognition in drug development. Recently, cell-based techniques developed for arrhythmia recognition primarily employ linear methods such as time-domain analysis that detect and compare individual waveforms and thus fall short in some applications that require automated and efficient arrhythmia recognition from large datasets. We carried out the first report to develop a biosensing system that integrated impedance measurement and multiparameter nonlinear dynamic algorithm (MNDA) analysis for drug-induced arrhythmia recognition and classification. The biosensing system cultured cardiomyocytes as physiologically relevant models, used interdigitated electrodes to detect the mechanical beating of the cardiomyocytes, and employed MNDA analysis to recognize drug-induced arrhythmia from the cardiomyocyte beating recording. The best performing MNDA parameter, approximate entropy, enabled the system to recognize the appearance of sertindole- and norepinephrine-induced arrhythmia in the recording. The MNDA reconstruction in phase space enabled the system to classify the different arrhythmias and quantify the severity of arrhythmia. This new biosensing system utilizing MNDA provides a promising and alternative method for drug-induced arrhythmia recognition and classification in cardiological and pharmaceutical applications.
心血管疾病是人类的首要死因。因此,心脏毒性是药物研发中通过心律失常识别评估的最重要的不良反应之一。最近,为心律失常识别开发的基于细胞的技术主要采用线性方法,如时域分析,该方法检测和比较单个波形,因此在一些需要从大型数据集中自动、高效地识别心律失常的应用中存在不足。我们首次报道了开发一种生物传感系统,该系统集成了阻抗测量和多参数非线性动态算法(MNDA)分析,用于药物诱导的心律失常识别和分类。该生物传感系统将心肌细胞培养为生理相关模型,使用叉指电极检测心肌细胞的机械搏动,并采用MNDA分析从心肌细胞搏动记录中识别药物诱导的心律失常。表现最佳的MNDA参数——近似熵,使该系统能够识别记录中舍吲哚和去甲肾上腺素诱导的心律失常的出现。相空间中的MNDA重建使该系统能够对不同的心律失常进行分类,并量化心律失常的严重程度。这种利用MNDA的新型生物传感系统为心脏病学和制药应用中的药物诱导心律失常识别和分类提供了一种有前景的替代方法。