Suppr超能文献

用于离子选择性膜的纳米多孔载体上的聚电解质层层沉积。

Polyelectrolyte layer-by-layer deposition on nanoporous supports for ion selective membranes.

作者信息

Percival Stephen J, Small Leo J, Spoerke Erik D, Rempe Susan B

机构信息

Sandia National Laboratories PO Box 5800, MS 1411 Albuquerque NM USA 87185

出版信息

RSC Adv. 2018 Sep 25;8(57):32992-32999. doi: 10.1039/c8ra05580g. eCollection 2018 Sep 18.

Abstract

This work demonstrates that the ionic selectivity and ionic conductivity of nanoporous membranes can be controlled independently layer-by-layer (LbL) deposition of polyelectrolytes and subsequent selective cross-linking of these polymer layers. LbL deposition offers a scalable, inexpensive method to tune the ion transport properties of nanoporous membranes by sequentially dip coating layers of cationic polyethyleneimine and anionic poly(acrylic acid) onto polycarbonate membranes. The cationic and anionic polymers are self-assembled through electrostatic and hydrogen bonding interactions and are chemically crosslinked to both change the charge distribution and improve the intermolecular integrity of the deposited films. Both the thickness of the deposited coating and the use of chemical cross-linking agents influence charge transport properties significantly. Increased polyelectrolyte thickness increases the selectivity for cationic transport through the membranes while adding polyelectrolyte films decreases the ionic conductivity compared to an uncoated membrane. Once the nanopores are filled, no additional decrease in conductivity is observed with increasing film thickness and, upon cross-linking, a portion of the lost conductivity is recovered. The cross-linking agent also influences the ionic selectivity of the resulting polyelectrolyte membranes. Increased selectivity for cationic transport occurs when using glutaraldehyde as the cross-linking agent, as expected due to the selective cross-linking of primary amines that decreases the net positive charge. Together, these results inform deposition of chemically robust, highly conductive, ion-selective membranes onto inexpensive porous supports for applications ranging from energy storage to water purification.

摘要

这项工作表明,通过聚电解质的逐层(LbL)沉积以及随后这些聚合物层的选择性交联,可以独立控制纳米多孔膜的离子选择性和离子电导率。LbL沉积提供了一种可扩展、低成本的方法,通过将阳离子聚乙烯亚胺和阴离子聚丙烯酸层依次浸涂到聚碳酸酯膜上来调节纳米多孔膜的离子传输特性。阳离子和阴离子聚合物通过静电和氢键相互作用自组装,并进行化学交联,以改变电荷分布并改善沉积膜的分子间完整性。沉积涂层的厚度和化学交联剂的使用都对电荷传输特性有显著影响。增加聚电解质厚度会提高阳离子通过膜传输的选择性,而与未涂覆的膜相比,添加聚电解质膜会降低离子电导率。一旦纳米孔被填满,随着膜厚度增加,未观察到电导率有额外下降,并且交联后,部分损失的电导率会恢复。交联剂也会影响所得聚电解质膜的离子选择性。使用戊二醛作为交联剂时,如预期的那样,由于伯胺的选择性交联降低了净正电荷,阳离子传输的选择性增加。总之,这些结果为将化学稳定、高导电、离子选择性的膜沉积到廉价多孔载体上提供了依据,可用于从能量存储到水净化等各种应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验