Institut Européen des Membranes, IEM-UMR 5635 ENSCM, UM, CNRS, Université de Montpellier , Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
EMPA , Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16669-16678. doi: 10.1021/acsami.7b02883. Epub 2017 May 8.
In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr and NH as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m without slip and 0.07 C·m considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.
在这项工作中,我们报告了通过原子层沉积 (ALD) 设计和微调氮化硼单纳米孔和纳米多孔膜。首先,我们开发了一种基于使用 BBr 和 NH 作为前驱体的 ALD 工艺,以合成 BN 薄膜。沉积的薄膜在厚度、组成和微观结构方面进行了表征。接下来,我们使用新开发的工艺在阳极氧化铝纳米多孔模板上生长 BN 薄膜,展示了 ALD 制备的 BN 的一致性优势,以及其在制造膜方面的可扩展性。ALD 工艺首次用于通过调整 BN 厚度来调节制备的单跨膜纳米孔的直径,并能够研究单个纳米孔上离子传输的基本方面。在 pH = 7 时,我们估计无滑移时的表面电荷密度为 0.16 C·m,考虑到 3nm 的合理滑移长度时为 0.07 C·m。在实验条件下进行的分子动力学模拟证实了测量的电导率和表面电荷的符号。所获得的高离子传输结果以及通过这种可扩展方法微调纳米多孔膜的能力为离子分离、能量收集和超滤装置等应用铺平了道路。