Suppr超能文献

氧自掺杂氮化硼纳米管的电学性质及其独立网络薄膜的压电效应。

Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film.

作者信息

Ban Chuncheng, Li Ling, Wei Liuxiao

机构信息

MEMS Center, Harbin Institute of Technology Harbin 150001 China

State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology) Harbin 150001 China.

出版信息

RSC Adv. 2018 Aug 16;8(51):29141-29146. doi: 10.1039/c8ra05698f. eCollection 2018 Aug 14.

Abstract

Boron-nitride nanotubes (BNNTs) are a common one-dimensional (1D) nanostructure that possess piezoelectric potential due to ion-covalent boron-nitride (BN) bonding. Harnessing the advantages offered by high-stability BN structures, these materials have been used for various new applications such as nanogenerators, nanotransistors, and nano-artificial eardrums. In this paper, we used nano-iron oxide red as a catalyst and boron powder in an aqueous dispersion as the boron source to synthesize high-purity O-self-doped BNNTs and film. We investigated the electrical properties of O-self-doped BNNTs and the piezoelectricity of freestanding BNNT film and demonstrated that the electrical properties of O-self-doped BNNTs improved dramatically compared to those of non-doped BNNTs. We also analyzed the band gaps and density of states (DOS) of the O-self-doped BNNTs with the Spanish Initiative for Electronic Simulation with Thousands of Atoms (SIESTA) code to explain the improvement. In addition, we revealed the piezoelectric voltage coefficient of O-self-doped BNNTs (0.28 V m N) network films, which can guide future applications for vibration nanosensors and transducers under extreme conditions.

摘要

氮化硼纳米管(BNNTs)是一种常见的一维(1D)纳米结构,由于离子共价氮化硼(BN)键合而具有压电势。利用高稳定性BN结构所提供的优势,这些材料已被用于各种新应用,如纳米发电机、纳米晶体管和纳米人工耳膜。在本文中,我们使用纳米氧化铁红作为催化剂,以水分散体中的硼粉作为硼源,合成了高纯度的氧自掺杂BNNTs和薄膜。我们研究了氧自掺杂BNNTs的电学性质以及独立的BNNT薄膜的压电性,并证明与未掺杂的BNNTs相比,氧自掺杂BNNTs的电学性质有显著改善。我们还使用西班牙数千原子电子模拟计划(SIESTA)代码分析了氧自掺杂BNNTs的带隙和态密度(DOS),以解释这种改善。此外,我们揭示了氧自掺杂BNNTs(0.28 V m N)网络薄膜的压电电压系数,这可为极端条件下振动纳米传感器和换能器的未来应用提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9622/9084491/baa895bbf167/c8ra05698f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验