Suppr超能文献

基于压电氮化硼纳米管的多功能电活性纳米复合材料。

Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

机构信息

National Institute of Aerospace , Hampton, Virginia 23666, United States.

Advanced Materials and Processing Branch, NASA Langley Research Center , Hampton, Virginia 23681-2199, United States.

出版信息

ACS Nano. 2015 Dec 22;9(12):11942-50. doi: 10.1021/acsnano.5b04526. Epub 2015 Nov 9.

Abstract

Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

摘要

太空探索任务需要能够在恶劣环境中稳定运行的传感器和设备,例如那些包括高热波动、原子氧和高能电离辐射的环境。然而,传统或最先进的电活性材料,如锆钛酸铅、聚偏二氟乙烯和碳纳米管(CNT)掺杂聚酰亚胺,在这些极端应用中使用存在局限性。理论研究表明,氮化硼纳米管(BNNTs)具有与 CNT 相当的强度-重量比、优异的高温稳定性(空气中可达 800°C)、较大的电活性特性和优异的中子辐射屏蔽能力。在这项研究中,我们展示了 BNNTs 在新型多功能电活性纳米复合材料中的实验电活性特性。在外加电场的作用下,发现 2wt% BNNT/聚酰亚胺复合材料表现出由线性压电和非线性电致伸缩成分叠加而成的电活性应变。当 BNNTs 通过拉伸 2wt% BNNT/聚酰亚胺复合材料进行对齐时,与未拉伸样品相比,电活性特性增加了约 460%。由两个单壁碳纳米管 BNNT 纸电极层之间的 BNNT 纸层组成的全纳米管致动器被发现具有更大的电活性特性。BNNT 复合材料的额外中子辐射屏蔽性能和紫外/可见/近红外光学性能使它们成为太空任务极端环境中使用的优秀候选材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验