Teipel Stefan J, Amaefule Chimezie O, Lüdtke Stefan, Görß Doreen, Faraza Sofia, Bruhn Sven, Kirste Thomas
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany.
Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany.
Front Psychol. 2022 Apr 25;13:882446. doi: 10.3389/fpsyg.2022.882446. eCollection 2022.
To determine whether gait and accelerometric features can predict disorientation events in young and older adults.
Cognitively healthy younger (18-40 years, = 25) and older (60-85 years, = 28) participants navigated on a treadmill through a virtual representation of the city of Rostock featured within the Gait Real-Time Analysis Interactive Lab (GRAIL) system. We conducted Bayesian Poisson regression to determine the association of navigation performance with domain-specific cognitive functions. We determined associations of gait and accelerometric features with disorientation events in real-time data using Bayesian generalized mixed effect models. The accuracy of gait and accelerometric features to predict disorientation events was determined using cross-validated support vector machines (SVM) and Hidden Markov models (HMM).
Bayesian analysis revealed strong evidence for the effect of gait and accelerometric features on disorientation. The evidence supported a relationship between executive functions but not visuospatial abilities and perspective taking with navigation performance. Despite these effects, the cross-validated percentage of correctly assigned instances of disorientation was only 72% in the SVM and 63% in the HMM analysis using gait and accelerometric features as predictors.
Disorientation is reflected in spatiotemporal gait features and the accelerometric signal as a potentially more easily accessible surrogate for gait features. At the same time, such measurements probably need to be enriched with other parameters to be sufficiently accurate for individual prediction of disorientation events.
确定步态和加速度特征是否能够预测年轻人和老年人的定向障碍事件。
认知健康的年轻参与者(18至40岁,n = 25)和老年参与者(60至85岁,n = 28)在跑步机上通过步态实时分析交互实验室(GRAIL)系统中的罗斯托克市虚拟地图进行导航。我们进行贝叶斯泊松回归以确定导航性能与特定领域认知功能之间的关联。我们使用贝叶斯广义混合效应模型在实时数据中确定步态和加速度特征与定向障碍事件之间的关联。使用交叉验证支持向量机(SVM)和隐马尔可夫模型(HMM)确定步态和加速度特征预测定向障碍事件的准确性。
贝叶斯分析揭示了步态和加速度特征对定向障碍有显著影响的有力证据。证据支持执行功能与导航性能之间的关系,但不支持视觉空间能力和换位思考与导航性能之间的关系。尽管有这些影响,但在使用步态和加速度特征作为预测指标的SVM分析中,正确分配的定向障碍实例的交叉验证百分比仅为72%,在HMM分析中为63%。
定向障碍反映在时空步态特征和加速度信号中,加速度信号可能是一种更容易获取的步态特征替代指标。同时,此类测量可能需要用其他参数进行补充,以便对定向障碍事件进行个体预测时足够准确。