文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

增材制造中的颗粒安全性评估:从暴露风险到先进的毒理学测试

Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing.

作者信息

Alijagic Andi, Engwall Magnus, Särndahl Eva, Karlsson Helen, Hedbrant Alexander, Andersson Lena, Karlsson Patrik, Dalemo Magnus, Scherbak Nikolai, Färnlund Kim, Larsson Maria, Persson Alexander

机构信息

Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden.

Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

出版信息

Front Toxicol. 2022 Apr 25;4:836447. doi: 10.3389/ftox.2022.836447. eCollection 2022.


DOI:10.3389/ftox.2022.836447
PMID:35548681
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9081788/
Abstract

Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and , including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.

摘要

增材制造(AM)或工业三维(3D)打印推动了一系列新的设计和生产可能性;在复杂产品生产的应用以及下一代材料的开发方面都突破了界限。增材制造技术应用多种原料,包括具有不同尺寸、形状和表面化学性质的塑料、金属和陶瓷颗粒粉末。此外,粉末通常会被重复使用,这可能会改变颗粒的物理化学性质,进而改变其潜在毒性。增材制造生产技术通常依靠激光或电子束来选择性地熔化或烧结颗粒粉末。原料粉末上的大量能量输入会产生多种副产品,包括不同数量的原始微粒、纳米颗粒、飞溅物以及在工作环境中整个生产和加工阶段排放的挥发性化学物质。微米和纳米级尺寸可能使颗粒与生物屏障相互作用并穿过生物屏障,进而可能导致意外的不良后果,包括炎症、氧化应激、信号通路激活、遗传毒性和致癌性。增材制造相关风险的另一个重要方面是在生产、使用过程中,包括在靶细胞中,由于聚合物分解以及聚合物颗粒中化学物质的高温转化而导致的单体和低聚物的排放/泄漏。这些化学物质是直接毒性、遗传毒性和内分泌干扰的潜在诱导剂。然而,目前在很大程度上缺乏对增材制造颗粒粉末及其副产品是否会对人类产生不利影响的了解,这促使我们对增材制造的整个生命周期(从原始和再利用到空气中的颗粒)进行全面的安全评估。因此,本综述将详细阐述:1)增材制造原料粉末的简要概述、再利用对颗粒物理化学性质的影响、增材制造行业中的主要暴露途径和防护措施;2)颗粒生物学特性和关键毒理学终点在颗粒安全评估中的作用;3)用于增材制造安全评估的纳米安全下一代毒理学方法。总之,所提出的测试方法将有助于更深入地了解现有和新出现的颗粒及化学安全挑战,并为开发增材制造行业中用于危害识别和风险评估的前沿方法提供策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/8019212029f4/ftox-04-836447-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/99fb5947563d/ftox-04-836447-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/915b41a6696f/ftox-04-836447-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/43d996709832/ftox-04-836447-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/fca57e032713/ftox-04-836447-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/e0038ecf55ee/ftox-04-836447-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/fc6f466611b0/ftox-04-836447-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/8019212029f4/ftox-04-836447-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/99fb5947563d/ftox-04-836447-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/915b41a6696f/ftox-04-836447-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/43d996709832/ftox-04-836447-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/fca57e032713/ftox-04-836447-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/e0038ecf55ee/ftox-04-836447-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/fc6f466611b0/ftox-04-836447-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/9081788/8019212029f4/ftox-04-836447-g007.jpg

相似文献

[1]
Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing.

Front Toxicol. 2022-4-25

[2]
Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models.

Toxicology. 2022-2-15

[3]
The Minderoo-Monaco Commission on Plastics and Human Health.

Ann Glob Health. 2023

[4]
Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures.

J Toxicol Environ Health B Crit Rev. 2021-6-17

[5]
Emissions and Exposures Associated with the Use of an Inconel Powder during Directed Energy Deposition Additive Manufacturing.

Int J Environ Res Public Health. 2023-6-22

[6]
Workplace Exposure Measurements of Emission from Industrial 3D Printing.

Ann Work Expo Health. 2023-6-6

[7]
Health hazards of particles in additive manufacturing: a cross-disciplinary study on reactivity, toxicity and occupational exposure to two nickel-based alloys.

Sci Rep. 2023-11-27

[8]
Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.

Food Chem Toxicol. 2008-3

[9]
Immunotoxic, genotoxic, and endocrine disrupting impacts of polyamide microplastic particles and chemicals.

Environ Int. 2024-1

[10]
An explorative study on respiratory health among operators working in polymer additive manufacturing.

Front Public Health. 2023

引用本文的文献

[1]
3D printing: Balancing innovation for sustainability with emerging environmental and health risks.

iScience. 2025-7-23

[2]
Assessment of the carcinogenic potential of particulate matter generated from 3D printing devices in Balb/c 3T3-1-1 cells.

Sci Rep. 2024-10-14

[3]
Visible particles in parenteral drug products: A review of current safety assessment practice.

Curr Res Toxicol. 2024-6-9

[4]
Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats.

J Toxicol Environ Health A. 2024-4-17

[5]
Health hazards of particles in additive manufacturing: a cross-disciplinary study on reactivity, toxicity and occupational exposure to two nickel-based alloys.

Sci Rep. 2023-11-27

[6]
NLRP3 inflammasome as a sensor of micro- and nanoplastics immunotoxicity.

Front Immunol. 2023

[7]
A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles.

Cells. 2023-1-11

[8]
Comprehensive Analysis of Two H13-Type Starting Materials Used for Laser Cladding and Aerosol Particles Formed in This Process.

Materials (Basel). 2022-10-20

本文引用的文献

[1]
Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles.

Front Toxicol. 2021-4-29

[2]
Exploring Methods for Surveillance of Occupational Exposure from Additive Manufacturing in Four Different Industrial Facilities.

Ann Work Expo Health. 2022-2-18

[3]
The Phagocytic Code Regulating Phagocytosis of Mammalian Cells.

Front Immunol. 2021

[4]
State of the art in additive manufacturing and its possible chemical and particle hazards-review.

Indoor Air. 2021-11

[5]
In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease.

Viruses. 2021-4-28

[6]
Metal additive manufacturing and possible clinical markers for the monitoring of exposure-related health effects.

PLoS One. 2021

[7]
Three-Dimensional (3D) Printing: Implications for Risk Assessment and Management in Occupational Settings.

Ann Work Expo Health. 2021-7-3

[8]
Predicting cell health phenotypes using image-based morphology profiling.

Mol Biol Cell. 2021-4-19

[9]
Regulatory developments and their impacts to the nano-industry: A case study for nano-additives in 3D printing.

Ecotoxicol Environ Saf. 2020-10-29

[10]
Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake.

ACS Appl Mater Interfaces. 2020-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索