Alijagic Andi, Engwall Magnus, Särndahl Eva, Karlsson Helen, Hedbrant Alexander, Andersson Lena, Karlsson Patrik, Dalemo Magnus, Scherbak Nikolai, Färnlund Kim, Larsson Maria, Persson Alexander
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden.
Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Front Toxicol. 2022 Apr 25;4:836447. doi: 10.3389/ftox.2022.836447. eCollection 2022.
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and , including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
增材制造(AM)或工业三维(3D)打印推动了一系列新的设计和生产可能性;在复杂产品生产的应用以及下一代材料的开发方面都突破了界限。增材制造技术应用多种原料,包括具有不同尺寸、形状和表面化学性质的塑料、金属和陶瓷颗粒粉末。此外,粉末通常会被重复使用,这可能会改变颗粒的物理化学性质,进而改变其潜在毒性。增材制造生产技术通常依靠激光或电子束来选择性地熔化或烧结颗粒粉末。原料粉末上的大量能量输入会产生多种副产品,包括不同数量的原始微粒、纳米颗粒、飞溅物以及在工作环境中整个生产和加工阶段排放的挥发性化学物质。微米和纳米级尺寸可能使颗粒与生物屏障相互作用并穿过生物屏障,进而可能导致意外的不良后果,包括炎症、氧化应激、信号通路激活、遗传毒性和致癌性。增材制造相关风险的另一个重要方面是在生产、使用过程中,包括在靶细胞中,由于聚合物分解以及聚合物颗粒中化学物质的高温转化而导致的单体和低聚物的排放/泄漏。这些化学物质是直接毒性、遗传毒性和内分泌干扰的潜在诱导剂。然而,目前在很大程度上缺乏对增材制造颗粒粉末及其副产品是否会对人类产生不利影响的了解,这促使我们对增材制造的整个生命周期(从原始和再利用到空气中的颗粒)进行全面的安全评估。因此,本综述将详细阐述:1)增材制造原料粉末的简要概述、再利用对颗粒物理化学性质的影响、增材制造行业中的主要暴露途径和防护措施;2)颗粒生物学特性和关键毒理学终点在颗粒安全评估中的作用;3)用于增材制造安全评估的纳米安全下一代毒理学方法。总之,所提出的测试方法将有助于更深入地了解现有和新出现的颗粒及化学安全挑战,并为开发增材制造行业中用于危害识别和风险评估的前沿方法提供策略。
Ann Glob Health. 2023
J Toxicol Environ Health B Crit Rev. 2021-6-17
Int J Environ Res Public Health. 2023-6-22
Ann Work Expo Health. 2023-6-6
Curr Res Toxicol. 2024-6-9
J Toxicol Environ Health A. 2024-4-17
Front Immunol. 2023
Front Toxicol. 2021-4-29
Front Immunol. 2021
Ann Work Expo Health. 2021-7-3
Mol Biol Cell. 2021-4-19
Ecotoxicol Environ Saf. 2020-10-29
ACS Appl Mater Interfaces. 2020-10-28