Suppr超能文献

基于图像形态分析预测细胞健康表型。

Predicting cell health phenotypes using image-based morphology profiling.

机构信息

Imaging Platform, Cambridge, MA 02142.

Cancer Program, Cambridge, MA 02142.

出版信息

Mol Biol Cell. 2021 Apr 19;32(9):995-1005. doi: 10.1091/mbc.E20-12-0784. Epub 2021 Feb 3.

Abstract

Genetic and chemical perturbations impact diverse cellular phenotypes, including multiple indicators of cell health. These readouts reveal toxicity and antitumorigenic effects relevant to drug discovery and personalized medicine. We developed two customized microscopy assays, one using four targeted reagents and the other three targeted reagents, to collectively measure 70 specific cell health phenotypes including proliferation, apoptosis, reactive oxygen species, DNA damage, and cell cycle stage. We then tested an approach to predict multiple cell health phenotypes using Cell Painting, an inexpensive and scalable image-based morphology assay. In matched CRISPR perturbations of three cancer cell lines, we collected both Cell Painting and cell health data. We found that simple machine learning algorithms can predict many cell health readouts directly from Cell Painting images, at less than half the cost. We hypothesized that these models can be applied to accurately predict cell health assay outcomes for any future or existing Cell Painting dataset. For Cell Painting images from a set of 1500+ compound perturbations across multiple doses, we validated predictions by orthogonal assay readouts. We provide a web app to browse predictions: http://broad.io/cell-health-app. Our approach can be used to add cell health annotations to Cell Painting datasets.

摘要

遗传和化学干扰会影响多种细胞表型,包括多个细胞健康指标。这些检测结果揭示了与药物发现和个性化医疗相关的毒性和抗肿瘤作用。我们开发了两种定制的显微镜检测方法,一种使用四种靶向试剂,另一种使用三种靶向试剂,共同测量 70 种特定的细胞健康表型,包括增殖、凋亡、活性氧、DNA 损伤和细胞周期阶段。然后,我们尝试使用 Cell Painting(一种廉价且可扩展的基于图像的形态测定法)来预测多种细胞健康表型的方法。在对三种癌细胞系的 CRISPR 干扰进行匹配时,我们同时收集了 Cell Painting 和细胞健康数据。我们发现,简单的机器学习算法可以直接从 Cell Painting 图像预测许多细胞健康读数,成本不到一半。我们假设这些模型可以应用于准确预测任何未来或现有的 Cell Painting 数据集的细胞健康测定结果。对于来自超过 1500 种化合物在多个剂量下的 1500 多个细胞的 Cell Painting 图像,我们通过正交测定法验证了预测结果。我们提供了一个网络应用程序来浏览预测结果:http://broad.io/cell-health-app。我们的方法可用于向 Cell Painting 数据集添加细胞健康注释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/439e/8108524/f7fec861b60c/mbc-32-995-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验