Suppr超能文献

基于双通道卷积核与多帧特征融合的动态视频图像分割

Dynamic Video Image Segmentation Based on Dual Channel Convolutional Kernel and Multi-Frame Feature Fusion.

作者信息

Chen Zuguo, Chen Chaoyang, Lu Ming

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China.

出版信息

Front Neurorobot. 2022 Apr 25;16:845858. doi: 10.3389/fnbot.2022.845858. eCollection 2022.

Abstract

The color image of the fire hole is key for the working condition identification of the aluminum electrolysis cell (AEC). However, the image of the fire hole is difficult for image segmentation due to the nonuniform distributed illuminated background and oblique beam radiation. Thus, a joint dual channel convolution kernel (DCCK) and multi-frame feature fusion (MFF) method is developed to achieve dynamic fire hole video image segmentation. Considering the invalid or extra texture disturbances in the edge feature images, the DCCK is used to select the effective edge features. Since the obtained edge features of the fire hole are not completely closed, the MFF algorithm is further applied to complement the missing portion of the edge. This method can assist to obtain the complete fire hole image of the AEC. The experiment results demonstrate that the proposed method has higher precision, recall rate, and lower boundary redundancy rate with well segmented image edge for the aid of working condition identification of the AEC.

摘要

火眼的彩色图像是铝电解槽(AEC)工况识别的关键。然而,由于照明背景分布不均匀和斜光束辐射,火眼图像难以进行图像分割。因此,开发了一种联合双通道卷积核(DCCK)和多帧特征融合(MFF)方法来实现动态火眼视频图像分割。考虑到边缘特征图像中的无效或额外纹理干扰,使用DCCK来选择有效的边缘特征。由于获得的火眼边缘特征不完全封闭,进一步应用MFF算法来补充边缘的缺失部分。该方法有助于获得AEC的完整火眼图像。实验结果表明,该方法具有较高的精度、召回率和较低的边界冗余率,图像边缘分割良好,有助于AEC的工况识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec06/9084455/8a8f922e5c4d/fnbot-16-845858-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验