Suppr超能文献

基于二维模糊 Fisher 和随机局部优化 QPSO 的快速阈值图像分割。

Fast Threshold Image Segmentation Based on 2D Fuzzy Fisher and Random Local Optimized QPSO.

出版信息

IEEE Trans Image Process. 2017 Mar;26(3):1355-1362. doi: 10.1109/TIP.2016.2621670. Epub 2016 Oct 26.

Abstract

In the paper, a real-time segmentation method that separates the target signal from the navigation image is proposed. In the approaching docking stage, the navigation image is composed of target and non-target signal, which are separately bright spot and space vehicle itself. Since the non-target signals is the main part of the navigation image, the traditional entropy-related criterions and Ostu-related criterions will bring inadequate segmentation, while the mere 2D Fisher criterion will causes over-segmentation, all the methods show their shortages in dealing with this kind of case. To guarantee a precise image segmentation, a revised 2D fuzzy Fisher is proposed in the paper to make a trade-off between positioning target regions and retaining target fuzzy boundaries. First, to reduce redundant computations in finding the threshold pair, a 2D fuzzy Fisher criterion-based integral image is established by way of simplifying the corresponding fuzzy domains. Then, to quicken the convergence, a random orthogonal component is added in its quasi-optimum particle to enhance its local searching capacity in each iteration. Experimental results show its competence of quick segmentation.

摘要

在本文中,提出了一种从导航图像中实时分割目标信号的方法。在接近对接阶段,导航图像由目标和非目标信号组成,分别为亮斑和空间飞行器本身。由于非目标信号是导航图像的主要部分,传统的基于熵的准则和 Ostu 相关准则会导致分割不足,而仅仅使用二维 Fisher 准则会导致过度分割,所有这些方法在处理这种情况时都显示出了它们的不足。为了保证图像的精确分割,本文提出了一种改进的二维模糊 Fisher 准则,在定位目标区域和保留目标模糊边界之间进行折衷。首先,为了减少寻找阈值对的冗余计算,通过简化相应的模糊域,建立了基于二维模糊 Fisher 准则的积分图像。然后,为了加快收敛速度,在其拟最优粒子中添加了一个随机正交分量,以增强其在每次迭代中的局部搜索能力。实验结果表明了它具有快速分割的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验