Suppr超能文献

马达驱动的细胞骨架复合材料重构导致可调节的时变弹性。

Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity.

机构信息

W. M. Keck Science Department, Scripps College, Pitzer College, and Claremont McKenna College, 925 N. Mills Ave., Claremont, California 91711, United States.

Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States.

出版信息

ACS Macro Lett. 2021 Sep 21;10(9):1151-1158. doi: 10.1021/acsmacrolett.1c00500. Epub 2021 Sep 3.

Abstract

The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin-tubulin molar percentages (25-75, 50-50, and 75-25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50-50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.

摘要

复合细胞骨架由相互作用的半刚性肌动蛋白和刚性微管网络组成,通过肌球蛋白等动力蛋白产生力并进行重构,从而实现细胞运动和有丝分裂等关键过程。然而,马达驱动活动如何改变细胞骨架复合材料的力学性质仍然是一个悬而未决的挑战。在这里,我们通过光激活肌球蛋白 II 马达驱动的具有不同肌动蛋白-微管摩尔百分比(25-75、50-50 和 75-25)的复合材料的光镊微流变学和共聚焦成像,表明马达活性通过肌动蛋白和微管的主动重构将弹性平台模量增加了两个数量级以上,这种重构在马达激活停止后持续数小时。非线性微流变学测量表明,马达驱动的重构增加了力响应和刚度,并抑制了肌动蛋白弯曲。由于微管增加的刚度和显著活性的足够的马达底物的协同效应,50-50 复合材料表现出最显著的机械响应。

相似文献

1
Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity.
ACS Macro Lett. 2021 Sep 21;10(9):1151-1158. doi: 10.1021/acsmacrolett.1c00500. Epub 2021 Sep 3.
3
Non-monotonic dependence of stiffness on actin crosslinking in cytoskeleton composites.
Soft Matter. 2019 Nov 28;15(44):9056-9065. doi: 10.1039/c9sm01550g. Epub 2019 Oct 24.
4
Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites.
Sci Rep. 2019 Sep 6;9(1):12831. doi: 10.1038/s41598-019-49236-4.
5
Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation.
Biophys J. 2018 Sep 18;115(6):1055-1067. doi: 10.1016/j.bpj.2018.08.010. Epub 2018 Aug 16.
6
Active cytoskeletal composites display emergent tunable contractility and restructuring.
Soft Matter. 2021 Dec 8;17(47):10765-10776. doi: 10.1039/d1sm01083b.
7
Nonequilibrium dynamics of probe filaments in actin-myosin networks.
Phys Rev E. 2017 Aug;96(2-1):022408. doi: 10.1103/PhysRevE.96.022408. Epub 2017 Aug 17.
8
Dynamic motions of molecular motors in the actin cytoskeleton.
Cytoskeleton (Hoboken). 2019 Nov;76(11-12):517-531. doi: 10.1002/cm.21582. Epub 2019 Dec 9.
9
A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62. doi: 10.1073/pnas.0912739107. Epub 2010 Apr 12.

引用本文的文献

1
Kinesin-Driven De-Mixing of Cytoskeleton Composites Drives Emergent Mechanical Properties.
Macromol Rapid Commun. 2025 Jul;46(14):e2401128. doi: 10.1002/marc.202401128. Epub 2025 Apr 10.
2
Deciphering Mechanochemical Influences of Emergent Actomyosin Crosstalk Using QCM-D.
Cell Mol Bioeng. 2024 Dec 4;18(1):99-108. doi: 10.1007/s12195-024-00835-w. eCollection 2025 Feb.
3
Optical tweezers microrheology maps micro-mechanics of complex systems.
Trends Biochem Sci. 2024 Jul;49(7):649-650. doi: 10.1016/j.tibs.2024.04.009. Epub 2024 May 22.
4
Multiscale architecture: Mechanics of composite cytoskeletal networks.
Biophys Rev (Melville). 2022 Aug 26;3(3):031304. doi: 10.1063/5.0099405. eCollection 2022 Sep.
5
Deciphering Mechanochemical Influences of Emergent Actomyosin Crosstalk using QCM-D.
bioRxiv. 2024 Nov 19:2024.02.26.582155. doi: 10.1101/2024.02.26.582155.
6
Kinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites.
PNAS Nexus. 2023 Jul 31;2(8):pgad245. doi: 10.1093/pnasnexus/pgad245. eCollection 2023 Aug.
9
Active cytoskeletal composites display emergent tunable contractility and restructuring.
Soft Matter. 2021 Dec 8;17(47):10765-10776. doi: 10.1039/d1sm01083b.

本文引用的文献

1
Active cytoskeletal composites display emergent tunable contractility and restructuring.
Soft Matter. 2021 Dec 8;17(47):10765-10776. doi: 10.1039/d1sm01083b.
2
Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics.
Sci Adv. 2021 Feb 5;7(6). doi: 10.1126/sciadv.abe4334. Print 2021 Feb.
3
Microtubule-based actin transport and localization in a spherical cell.
R Soc Open Sci. 2020 Nov 11;7(11):201730. doi: 10.1098/rsos.201730. eCollection 2020 Nov.
4
Shear-Induced Gelation of Self-Yielding Active Networks.
Phys Rev Lett. 2020 Oct 23;125(17):178003. doi: 10.1103/PhysRevLett.125.178003.
5
Self-straining of actively crosslinked microtubule networks.
Nat Phys. 2019 Dec;15(12):1295-1300. doi: 10.1038/s41567-019-0642-1. Epub 2019 Sep 2.
6
Non-monotonic dependence of stiffness on actin crosslinking in cytoskeleton composites.
Soft Matter. 2019 Nov 28;15(44):9056-9065. doi: 10.1039/c9sm01550g. Epub 2019 Oct 24.
7
Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites.
Sci Rep. 2019 Sep 6;9(1):12831. doi: 10.1038/s41598-019-49236-4.
8
Actin-microtubule crosstalk in cell biology.
Nat Rev Mol Cell Biol. 2019 Jan;20(1):38-54. doi: 10.1038/s41580-018-0067-1.
9
Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation.
Biophys J. 2018 Sep 18;115(6):1055-1067. doi: 10.1016/j.bpj.2018.08.010. Epub 2018 Aug 16.
10
Actin-Network Architecture Regulates Microtubule Dynamics.
Curr Biol. 2018 Aug 20;28(16):2647-2656.e4. doi: 10.1016/j.cub.2018.06.028. Epub 2018 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验