Suppr超能文献

共缠结的肌动蛋白-微管复合材料表现出可调的刚度和幂律应力松弛。

Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation.

机构信息

Department of Physics and Biophysics, University of San Diego, San Diego, California.

Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts.

出版信息

Biophys J. 2018 Sep 18;115(6):1055-1067. doi: 10.1016/j.bpj.2018.08.010. Epub 2018 Aug 16.

Abstract

We use optical tweezers microrheology and fluorescence microscopy to characterize the nonlinear mesoscale mechanics and mobility of in vitro co-entangled actin-microtubule composites. We create a suite of randomly oriented, well-mixed networks of actin and microtubules by co-polymerizing varying ratios of actin and tubulin in situ. To perturb each composite far from equilibrium, we use optical tweezers to displace an embedded microsphere a distance greater than the lengths of the filaments at a speed much faster than their intrinsic relaxation rates. We simultaneously measure the force the filaments exert on the bead and the subsequent force relaxation. We find that the presence of a large fraction of microtubules (>0.7) is needed to substantially increase the measured force, which is accompanied by large heterogeneities in force response. Actin minimizes these heterogeneities by reducing the mesh size of the composites and supporting microtubules against buckling. Composites also undergo a sharp transition from strain softening to stiffening when the fraction of microtubules (ϕ) exceeds 0.5, which we show arises from faster poroelastic relaxation and suppressed actin bending fluctuations. The force after bead displacement relaxes via power-law decay after an initial period of minimal relaxation. The short-time relaxation profiles (t < 0.06 s) arise from poroelastic and bending contributions, whereas the long-time power-law relaxation is indicative of filaments reptating out of deformed entanglement constraints. The scaling exponents for the long-time relaxation exhibit a nonmonotonic dependence on ϕ, reaching a maximum for equimolar composites (ϕ = 0.5), suggesting that reptation is fastest in ϕ = 0.5 composites. Corresponding mobility measurements of steady-state actin and microtubules show that both filaments are indeed the most mobile in ϕ = 0.5 composites. This nonmonotonic dependence of mobility on ϕ demonstrates the important interplay between mesh size and filament rigidity in polymer networks and highlights the surprising emergent properties that can arise in composites.

摘要

我们使用光镊微流变学和荧光显微镜来表征体外纠缠的肌动蛋白-微管复合材料的非线性介观力学和迁移率。我们通过原位共聚不同比例的肌动蛋白和微管蛋白,创建了一系列随机取向、混合良好的肌动蛋白和微管网络。为了使每个复合材料远离平衡状态,我们使用光镊将嵌入的微球位移超过纤维的长度,速度远快于它们的固有松弛率。我们同时测量纤维对珠子施加的力和随后的力松弛。我们发现,需要存在大量的微管蛋白(> 0.7)才能显著增加测量的力,这伴随着力响应的大异质性。肌动蛋白通过减小复合材料的网格尺寸并支撑微管蛋白防止屈曲,从而最小化这些异质性。当微管蛋白的分数(ϕ)超过 0.5 时,复合材料还会经历从应变软化到硬化的急剧转变,我们表明这是由于更快的多孔弹性松弛和抑制的肌动蛋白弯曲波动所致。珠子位移后的力在初始最小松弛期后通过幂律衰减来松弛。短时间松弛曲线(t < 0.06 s)源于多孔弹性和弯曲贡献,而长时间幂律松弛则表明纤维从变形缠结约束中蠕动出来。长时间松弛的标度指数表现出对 ϕ 的非单调依赖性,在等摩尔复合材料(ϕ = 0.5)处达到最大值,表明在 ϕ = 0.5 复合材料中蠕动最快。稳态肌动蛋白和微管蛋白的相应迁移率测量表明,两种纤维实际上在 ϕ = 0.5 复合材料中最具迁移性。迁移率对 ϕ 的这种非单调依赖性表明了网格尺寸和纤维刚性在聚合物网络中的重要相互作用,并突出了复合材料中可能出现的惊人涌现特性。

相似文献

1
Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation.
Biophys J. 2018 Sep 18;115(6):1055-1067. doi: 10.1016/j.bpj.2018.08.010. Epub 2018 Aug 16.
2
Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites.
Sci Rep. 2019 Sep 6;9(1):12831. doi: 10.1038/s41598-019-49236-4.
3
Non-monotonic dependence of stiffness on actin crosslinking in cytoskeleton composites.
Soft Matter. 2019 Nov 28;15(44):9056-9065. doi: 10.1039/c9sm01550g. Epub 2019 Oct 24.
4
Nonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation.
Biophys J. 2017 Oct 3;113(7):1540-1550. doi: 10.1016/j.bpj.2017.01.012. Epub 2017 Feb 16.
6
Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity.
ACS Macro Lett. 2021 Sep 21;10(9):1151-1158. doi: 10.1021/acsmacrolett.1c00500. Epub 2021 Sep 3.
7
Filament Rigidity Vies with Mesh Size in Determining Anomalous Diffusion in Cytoskeleton.
Biomacromolecules. 2019 Dec 9;20(12):4380-4388. doi: 10.1021/acs.biomac.9b01057. Epub 2019 Nov 15.
10
Synergistic Interactions Between DNA and Actin Trigger Emergent Viscoelastic Behavior.
Phys Rev Lett. 2018 Dec 21;121(25):257801. doi: 10.1103/PhysRevLett.121.257801.

引用本文的文献

1
Interspecies interactions in dual, fibrous gels enable control of gel structure and rheology.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2423293122. doi: 10.1073/pnas.2423293122. Epub 2025 May 6.
2
Kinesin-Driven De-Mixing of Cytoskeleton Composites Drives Emergent Mechanical Properties.
Macromol Rapid Commun. 2025 Jul;46(14):e2401128. doi: 10.1002/marc.202401128. Epub 2025 Apr 10.
5
How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies.
Biophys Rev (Melville). 2024 Jun 3;5(2):021307. doi: 10.1063/5.0198119. eCollection 2024 Jun.
6
Multiscale architecture: Mechanics of composite cytoskeletal networks.
Biophys Rev (Melville). 2022 Aug 26;3(3):031304. doi: 10.1063/5.0099405. eCollection 2022 Sep.
7
Multiscale elasticity mapping of biological samples in 3D at optical resolution.
Acta Biomater. 2024 Mar 1;176:250-266. doi: 10.1016/j.actbio.2023.12.036. Epub 2023 Dec 29.
8
Kinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites.
PNAS Nexus. 2023 Jul 31;2(8):pgad245. doi: 10.1093/pnasnexus/pgad245. eCollection 2023 Aug.
9
Cell wall and cytoskeletal contributions in single cell biomechanics of .
Quant Plant Biol. 2022 Jan 21;3:e1. doi: 10.1017/qpb.2021.15. eCollection 2022.

本文引用的文献

1
2
Nonlinear mechanics of entangled F-actin solutions.
Soft Matter. 2008 Jul 16;4(8):1675-1680. doi: 10.1039/b800989a.
3
Active microrheology determines scale-dependent material properties of Chaetopterus mucus.
PLoS One. 2017 May 31;12(5):e0176732. doi: 10.1371/journal.pone.0176732. eCollection 2017.
4
Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes.
Science. 2016 Apr 22;352(6284):aaf0659. doi: 10.1126/science.aaf0659.
6
Emergent properties of composite semiflexible biopolymer networks.
Bioarchitecture. 2014;4(4-5):138-43. doi: 10.4161/19490992.2014.989035.
7
Cytoskeletal crosstalk: when three different personalities team up.
Curr Opin Cell Biol. 2015 Feb;32:39-47. doi: 10.1016/j.ceb.2014.10.005. Epub 2014 Nov 15.
8
Elasticity of 3D networks with rigid filaments and compliant crosslinks.
Soft Matter. 2015 Jan 14;11(2):343-54. doi: 10.1039/c4sm01789g.
9
Nonlinear microrheology reveals entanglement-driven molecular-level viscoelasticity of concentrated DNA.
Phys Rev Lett. 2014 Aug 29;113(9):098303. doi: 10.1103/PhysRevLett.113.098303. Epub 2014 Aug 28.
10
Actin-microtubule coordination at growing microtubule ends.
Nat Commun. 2014 Aug 27;5:4778. doi: 10.1038/ncomms5778.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验