Suppr超能文献

驱动蛋白和肌球蛋白马达相互竞争,以在可编程细胞骨架复合材料中驱动丰富的多相动力学。

Kinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites.

作者信息

McGorty Ryan J, Currie Christopher J, Michel Jonathan, Sasanpour Mehrzad, Gunter Christopher, Lindsay K Alice, Rust Michael J, Katira Parag, Das Moumita, Ross Jennifer L, Robertson-Anderson Rae M

机构信息

Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.

School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA.

出版信息

PNAS Nexus. 2023 Jul 31;2(8):pgad245. doi: 10.1093/pnasnexus/pgad245. eCollection 2023 Aug.

Abstract

The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate-far from the composite cytoskeleton in cells. Here, we engineer actin-microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our minimal advection-diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three classes-slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag. These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes.

摘要

细胞细胞骨架依赖于多种马达蛋白、细丝和结合蛋白协同作用,以实现从有丝分裂到趋化作用等非平衡过程。细胞骨架具有多种可重构性,由其组成成分之间的相互作用编程,使其成为一个基础的活性物质平台。然而,目前对活性物质的研究主要局限于作用于单一底物的单个力产生组件,与细胞中的复合细胞骨架相去甚远。在这里,我们设计了由驱动蛋白和肌球蛋白马达驱动并由交联剂调节的肌动蛋白-微管(MT)复合材料,使其能够以跨越三个数量级的速度进行弹道式重构和流动,这取决于复合材料的配方以及相对于马达活动开始的时间。差分动态显微镜分析表明,驱动蛋白和肌球蛋白相互竞争,以延迟加速的开始并抑制离散的重构事件,而肌动蛋白或微管的被动交联则具有相反的效果。我们的最小平流扩散模型和空间相关性分析将这些动力学与结构相关联,马达拮抗作用抑制了重构和混合,而交联则增强了聚集。尽管有丰富的配方空间和依赖于配方的新兴结构,但所有复合材料在所有时间尺度上的非平衡动力学都可以分为三类——缓慢各向同性重定向、快速定向流动和多模式重构。此外,我们的数学模型表明,不同的结构基序可以简单地由马达驱动的平流和摩擦阻力之间的相互作用产生。我们平台的这些一般特征有助于应用于其他活性物质系统,并揭示细胞骨架成分可以通过多种方式合作或竞争以实现广泛的细胞过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90a2/10416814/98c78290a658/pgad245f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验