Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States.
School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom.
ACS Macro Lett. 2021 Dec 21;10(12):1540-1548. doi: 10.1021/acsmacrolett.1c00638. Epub 2021 Nov 19.
Polymer topology has been shown to play a key role in tuning the dynamics of complex fluids and gels. At the same time, polymer composites, ubiquitous in everyday life, have been shown to exhibit emergent desirable mechanical properties not attainable in single-species systems. Yet, how topology impacts the dynamics and structure of polymer composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA) of equal length. We couple optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites with linear DNA exhibit a strongly nonmonotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites containing ring DNA show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the decreased conformational size and increased miscibility of rings.
聚合物拓扑结构已被证明在调节复杂流体和凝胶的动力学方面起着关键作用。与此同时,聚合物复合材料在日常生活中无处不在,它们表现出的新兴理想机械性能是单一组分系统所无法达到的。然而,拓扑结构如何影响聚合物复合材料的动力学和结构仍知之甚少。在这里,我们创建了刚性棒(微管)与柔性线性和环形聚合物(DNA)的纠缠溶液中的聚合复合材料,这些聚合物的长度相等。我们将光镊微流变学与共聚焦显微镜和标度粒子理论相结合,结果表明,由于消耗驱动的聚合和微管絮凝,具有线性 DNA 的复合材料的弹性和刚度对微管浓度具有强烈的非单调依赖性。相比之下,含有环形 DNA 的复合材料的弹性强度随微管浓度呈单调增加,我们证明这是由于环形的构象尺寸减小和混合性增加所致。