Computational Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany.
Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany.
Anal Chem. 2022 May 24;94(20):7181-7190. doi: 10.1021/acs.analchem.1c05435. Epub 2022 May 12.
The prediction of fragment ion intensities and retention time of peptides has gained significant attention over the past few years. However, the progress shown in the accurate prediction of such properties focused primarily on unlabeled peptides. Tandem mass tags (TMT) are chemical peptide labels that are coupled to free amine groups usually after protein digestion to enable the multiplexed analysis of multiple samples in bottom-up mass spectrometry. It is a standard workflow in proteomics ranging from single-cell to high-throughput proteomics. Particularly for TMT, increasing the number of confidently identified spectra is highly desirable as it provides identification and quantification information with every spectrum. Here, we report on the generation of an extensive resource of synthetic TMT-labeled peptides as part of the ProteomeTools project and present the extension of the deep learning model Prosit to accurately predict the retention time and fragment ion intensities of TMT-labeled peptides with high accuracy. Prosit-TMT supports CID and HCD fragmentation and ion trap and Orbitrap mass analyzers in a single model. Reanalysis of published TMT data sets show that this single model extracts substantial additional information. Applying Prosit-TMT, we discovered that the expression of many proteins in human breast milk follows a distinct daily cycle which may prime the newborn for nutritional or environmental cues.
在过去的几年中,肽的碎片离子强度和保留时间的预测引起了广泛关注。然而,在这些性质的准确预测方面取得的进展主要集中在未标记的肽上。串联质谱标签(TMT)是一种化学肽标签,通常在蛋白质消化后与游离氨基结合,以实现基于质谱的多个样本的多路复用分析。这是蛋白质组学中的标准工作流程,从单细胞到高通量蛋白质组学。特别是对于 TMT,增加可置信鉴定的光谱数量是非常理想的,因为它为每个光谱提供鉴定和定量信息。在这里,我们报告了作为 ProteomeTools 项目一部分的大量合成 TMT 标记肽的生成,并介绍了 Prosit 深度学习模型的扩展,以高精度准确预测 TMT 标记肽的保留时间和碎片离子强度。Prosit-TMT 在单个模型中支持 CID 和 HCD 碎裂以及离子阱和轨道阱质谱仪。对已发表的 TMT 数据集的重新分析表明,该单一模型提取了大量额外信息。应用 Prosit-TMT,我们发现人乳中许多蛋白质的表达都遵循明显的每日周期,这可能为新生儿提供营养或环境线索。