Suppr超能文献

Prosit-TMT:深度学习助力 TMT 标记肽的鉴定。

Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides.

机构信息

Computational Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany.

Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany.

出版信息

Anal Chem. 2022 May 24;94(20):7181-7190. doi: 10.1021/acs.analchem.1c05435. Epub 2022 May 12.

Abstract

The prediction of fragment ion intensities and retention time of peptides has gained significant attention over the past few years. However, the progress shown in the accurate prediction of such properties focused primarily on unlabeled peptides. Tandem mass tags (TMT) are chemical peptide labels that are coupled to free amine groups usually after protein digestion to enable the multiplexed analysis of multiple samples in bottom-up mass spectrometry. It is a standard workflow in proteomics ranging from single-cell to high-throughput proteomics. Particularly for TMT, increasing the number of confidently identified spectra is highly desirable as it provides identification and quantification information with every spectrum. Here, we report on the generation of an extensive resource of synthetic TMT-labeled peptides as part of the ProteomeTools project and present the extension of the deep learning model Prosit to accurately predict the retention time and fragment ion intensities of TMT-labeled peptides with high accuracy. Prosit-TMT supports CID and HCD fragmentation and ion trap and Orbitrap mass analyzers in a single model. Reanalysis of published TMT data sets show that this single model extracts substantial additional information. Applying Prosit-TMT, we discovered that the expression of many proteins in human breast milk follows a distinct daily cycle which may prime the newborn for nutritional or environmental cues.

摘要

在过去的几年中,肽的碎片离子强度和保留时间的预测引起了广泛关注。然而,在这些性质的准确预测方面取得的进展主要集中在未标记的肽上。串联质谱标签(TMT)是一种化学肽标签,通常在蛋白质消化后与游离氨基结合,以实现基于质谱的多个样本的多路复用分析。这是蛋白质组学中的标准工作流程,从单细胞到高通量蛋白质组学。特别是对于 TMT,增加可置信鉴定的光谱数量是非常理想的,因为它为每个光谱提供鉴定和定量信息。在这里,我们报告了作为 ProteomeTools 项目一部分的大量合成 TMT 标记肽的生成,并介绍了 Prosit 深度学习模型的扩展,以高精度准确预测 TMT 标记肽的保留时间和碎片离子强度。Prosit-TMT 在单个模型中支持 CID 和 HCD 碎裂以及离子阱和轨道阱质谱仪。对已发表的 TMT 数据集的重新分析表明,该单一模型提取了大量额外信息。应用 Prosit-TMT,我们发现人乳中许多蛋白质的表达都遵循明显的每日周期,这可能为新生儿提供营养或环境线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验