Suppr超能文献

呋喃和噻吩纳米线的理论研究:结构、环加成势垒和活化体积。

Theoretical Studies of Furan and Thiophene Nanothreads: Structures, Cycloaddition Barriers, and Activation Volumes.

机构信息

Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, Donostia-San Sebastian 20018, Spain.

Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.

出版信息

J Am Chem Soc. 2022 May 25;144(20):9044-9056. doi: 10.1021/jacs.2c01720. Epub 2022 May 12.

Abstract

This theoretical study examines the formation, structure, and stability of two of the most ordered nanothreads produced yet, those derived from furan and thiophene. The energetic consequences and activation barriers of the first two steps of oligomerization via a Diels-Alder mechanism were examined. The ca. 20 GPa difference in the synthetic pressures (lower for furan) is explainable in terms of the greater loss of aromaticity by the thiophene. The effects of pressure on the reaction profiles, operating through a volume decrease along the reaction coordinate, are illustrated. The interesting option of polymerization proceeding in one or two directions opens up the possibility of polymers with opposing, cumulative dipole moments. The computed activation volumes are consistently more negative for furan, in accordance with the lower onset pressure of furan polymerization. The energetics of three ordered polymer structures were examined. The polymer, with all O/S atoms on the same side, if not allowed to distort, is at a high energy relative to the other two due to the O/S lone pair repulsion, understandably greater for S than for O at the 2.8/2.6 Å separation. Set free, the isomers curve or arch in two- or three-dimensional (helical) ways, whose energetics are traced in detail. The polymer can also stabilize itself by twisting into zig-zag or helical energy minima. The release of strain in a linear thread as the pressure is relaxed to 1 atm, with consequent thread curving, is a likely mechanism for the observed loss of the crystalline order in the polymer as it is returned to ambient pressure.

摘要

这项理论研究考察了两种迄今为止最有序的纳米线的形成、结构和稳定性,它们分别来自呋喃和噻吩。通过 Diels-Alder 机制的聚合反应的前两个步骤的能量后果和活化势垒进行了研究。呋喃的合成压力(较低)与噻吩的芳香性损失较大有关,因此可以解释约 20 GPa 的差异。压力对反应曲线的影响,通过沿反应坐标的体积减小来体现。聚合可以沿一个或两个方向进行的有趣选择,为具有相反、累积偶极矩的聚合物开辟了可能性。计算的活化体积对于呋喃来说一直更负,这与呋喃聚合的起始压力较低一致。三种有序聚合物结构的能量进行了研究。如果不允许扭曲,所有 O/S 原子都在同一侧的聚合物相对于另外两种聚合物处于高能状态,由于 O/S 孤对排斥,这种情况在 S 比 O 更明显,因为它们之间的距离为 2.8/2.6 Å。释放后, 异构体以二维或三维(螺旋)方式弯曲或拱起,其能量学被详细追踪。 聚合物也可以通过扭曲成锯齿或螺旋的能量最低点来稳定自身。线性纤维在压力释放到 1 大气压时释放应变,导致纤维弯曲,这可能是观察到聚合物在返回环境压力时晶体有序性丧失的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验