Suppr超能文献

检测半胱氨酸蛋白酶反应性计算研究的经济适用策略:以 SARS-CoV-2 3CL 蛋白酶抑制为例。

Testing Affordable Strategies for the Computational Study of Reactivity in Cysteine Proteases: The Case of SARS-CoV-2 3CL Protease Inhibition.

机构信息

Departamento de Química Física, Universitat de Valencia, Burjassot, Valencia 46100, Spain.

Departamento de Bioinformática, Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca 3460000, Chile.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):4005-4013. doi: 10.1021/acs.jctc.2c00294. Epub 2022 May 13.

Abstract

Cysteine proteases are an important target for the development of inhibitors that could be used as drugs to regulate the activity of these kinds of enzymes involved in many diseases, including COVID-19. For this reason, it is important to have methodological tools that allow a detailed study of their activity and inhibition, combining computational efficiency and accuracy. We here explore the performance of different quantum mechanics/molecular mechanics methods to explore the inhibition reaction mechanism of the SARS-CoV-2 3CL protease with a hydroxymethyl ketone derivative. We selected two density functional theory (DFT) functionals (B3LYP and M06-2X), two semiempirical Hamiltonians (AM1d and PM6), and two tight-binding DFT methods (DFTB3 and GFN2-xTB) to explore the free energy landscape associated with this reaction. We show that it is possible to obtain an accurate description combining molecular dynamics simulations performed using tight-binding DFT methods and single-point energy corrections at a higher QM description. The use of a computational strategy that provides reliable results at a reasonable computational cost could assist the in silico screening of possible candidates during the design of new drugs directed against cysteine proteases.

摘要

半胱氨酸蛋白酶是抑制剂开发的重要靶点,抑制剂可用作药物来调节涉及多种疾病(包括 COVID-19)的这些酶的活性。因此,拥有允许详细研究其活性和抑制作用的方法学工具非常重要,这些工具要结合计算效率和准确性。在这里,我们探索了不同量子力学/分子力学方法的性能,以探索 SARS-CoV-2 3CL 蛋白酶与羟甲基酮衍生物的抑制反应机制。我们选择了两种密度泛函理论(DFT)泛函(B3LYP 和 M06-2X)、两种半经验哈密顿量(AM1d 和 PM6)和两种紧束缚 DFT 方法(DFTB3 和 GFN2-xTB)来探索与该反应相关的自由能景观。我们表明,通过使用紧束缚 DFT 方法进行分子动力学模拟并在更高的 QM 描述中进行单点能校正,可以获得结合的精确描述。在设计针对半胱氨酸蛋白酶的新药时,使用能够以合理的计算成本提供可靠结果的计算策略可以辅助虚拟筛选可能的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29f0/10391616/00b79f257752/ct2c00294_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验